1.为什么很多论文都要用遗传算法,蚁群算法
蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然。蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
2.关于神经网络,蚁群算法和遗传算法
1. 神经网络并行性和自适应性很强,应用领域很广,在任何非线性问题中都可以应用,如控制、信息、预测等各领域都能应用。
2. 蚁群算法最开始应用于TSP问题,获得了成功,后来又广泛应用于各类组合优化问题。但是该算法理论基础较薄弱,算法收敛性都没有得到证明,很多参数的设定也仅靠经验,实际效果也一般,使用中也常常早熟。
3. 遗传算法是比较成熟的算法,它的全局寻优能力很强,能够很快地趋近较优解。主要应用于解决组合优化的NP问题。
4. 这三种算法可以相互融合,例如GA可以优化神经网络初始权值,防止神经网络训练陷入局部极小且加快收敛速度。蚁群算法也可用于训练神经网络,但一定要使用优化后的蚁群算法,如最大-最小蚁群算法和带精英策略。
3.计算机专业本科生做毕业论文一般用什么算法
一个程序的核心在于算法。比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。
算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。
4.计算机专业本科生做毕业论文一般用什么算法
一个程序的核心在于算法。
比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。
算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。
5.遗传算法和蚁群算法的区别
遗传算法(Genetic Algorithm,GA)是由Holland J.H.于20世纪70年代提出的一种优化方法,其最优解的搜索过程模拟达尔文的进化论和“适者生存”的思想。
蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的机率型算法。
两种算法从概念上都属于随机优化算法,遗传算法是进化算法,主要通过选择、变异和交叉算子,其中每个基因是由二进制串组成;蚁群算法是基于图论的算法,通过信息素选择交换信息。
6.我要写一篇关于粒子群最优化算法(PSO)的论文,还需要一个关于这
摘自:人工智能论坛 1。
引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。
系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2。 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容 1。 研究如何利用计算技术研究生物现象 2。
研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容。 现在已经有很多源于生物现象的计算技巧。
例如, 人工神经网络是简化的大脑模型。 遗传算法是模拟基因进化过程的。
现在我们讨论另一种生物系统- 社会系统。 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为。
也可称做"群智能"(swarm intelligence)。 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计。
在计算智能(computational intelligence)领域有两种基于群智能的算法。 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟。 已经成功运用在很多离散优化问题上。
粒子群优化算法(PSO) 也是起源对简单社会系统的模拟。 最初设想是模拟鸟群觅食的过程。
但后来发现PSO是一种很好的优化工具。 3。
算法介绍 如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。 那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。 然后粒子们就追随当前的最优粒子在解空间中搜索 PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest。
另一个极值是整个种群目前找到的最优解。 这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, persent[] 是当前粒子的位置。
pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数。 c1, c2 是学习因子。
通常 c1 = c2 = 2。 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax 4。
遗传算法和 PSO 的比较 大多数演化计算技术都是用同样的过程 1。 种群随机初始化 2。
对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关 3。
种群根据适应值进行复制 4。 如果终止条件满足的话,就停止,否则转步骤2 从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解 但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation)。
而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的。 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。
在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子, 这是单向的信息流动。 整个搜索更新过程是跟随当前最优解的过程。
与遗传。
7.蚁群算法与遗传算法的区别
都属于智能优化算法
但是蚁群算法具有一定的记忆性,遗传算法没有
蚁群算法有几种原则,比如觅食原则,避障原则等,遗传算法没有
蚁群算法属于群智能优化算法,具有并行性,每个粒子都可以主动寻优,遗传算法不行
蚁群算法基于信息素在环境中的指示,遗传算法是基于优胜劣汰的生物进化思想
遗传算法有选择,交叉,变异三种算子,每种算子又有各自的不同方法,通过对算子方法的修改和搭配,可以得到不同的改进遗传算法
蚁群算法则多和其他智能算法相结合,得到改进的蚁群算法
转载请注明出处众文网 » 遗传算法和蚁群算法毕业论文