齿轮传动毕业论文

关于齿轮毕业论文(齿轮传动论文)

1.齿轮传动论文

齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。

按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。具有结构紧凑、效率高、寿命长等特点。

齿轮传动是指用主、从动轮轮齿直接、传递运动和动力的装置。 在所有的机械传动中,齿轮传动应用最广,可用来传递任意两轴之间的运动和动力。

齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。

但是制造齿轮需要有专门的设备,啮合传动会产生噪声。 [编辑本段]类型 (1)根据两轴的相对位置和轮齿的方向,可分为以下类型: <1>圆柱齿轮传动; <2>锥齿轮传动; <3>交错轴斜齿轮传动。

(2)根据齿轮的工作条件,可分为: <1>开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。 <2>半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭。

<3>闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确, 齿轮传动有良好的工作条件,是应用最广泛的齿轮传动。 [编辑本段]设计准则 针对齿轮五种失效形式,应分别确立相应的设计准则。

但是对于齿面磨损、塑性变形等,由于尚未建立起广为工程实际使用而且行之有效的计算方法及设计数据,所以目前设计齿轮传动时,通常只按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。对于高速大功率的齿轮传动(如航空发动机主传动、汽轮发电机组传动等),还要按保证齿面抗胶合能力的准则进行计算(参阅GB6413-1986)。

至于抵抗其它失效能力,目前虽然一般不进行计算,但应采取的措施,以增强轮齿抵抗这些失效的能力。 1、闭式齿轮传动 由实践得知,在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。

但对于齿面硬度很高、齿芯强度又低的齿轮(如用20、20Cr钢经渗碳后淬火的齿轮)或材质较脆的齿轮,通常则以保证齿根弯曲疲劳强度为主。如果两齿轮均为硬齿面且齿面硬度一样高时,则视具体情况而定。

功率较大的传动,例如输入功率超过75kW的闭式齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等,为了控制温升,还应作散热能力计算。 2、开式齿轮传动 开式(半开式)齿轮传动,按理应根据保证齿面抗磨损及齿根抗折断能力两准则进行计算,但如前所述,对齿面抗磨损能力的计算方法迄今尚不够完善,故对开式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为设计准则。

为了延长开式(半开式)齿轮传动的寿命,可视具体需要而将所求得的模数适当增大。 前已述之,对于齿轮的轮圈、轮辐、轮毂等部位的尺寸,通常仅作结构设计,不进行强度计算。

[编辑本段]齿轮传动类型 1.圆柱齿轮传动 用于平行轴间的传动,一般传动比单级可到8,最大20,两级可到45,最大60,三级可到200,最大300。传递功率可到10万千瓦,转速可到10万转/分,圆周速度可到300米/秒。

单级效率为0.96~0.99。直齿轮传动适用于中、低速传动。

斜齿轮传动运转平稳,适用于中、高速传动。人字齿轮传动适用于传递大功率和大转矩的传动。

圆柱齿轮传动的啮合形式有3种:外啮合齿轮传动,由两个外齿轮相啮合,两轮的转向相反;内啮合齿轮传动,由一个内齿轮和一个小的外齿轮相啮合,两轮的转向相同;齿轮齿条传动,可将齿轮的转动变为齿条的直线移动,或者相反。 2.锥齿轮传动 用于相交轴间的传动。

单级传动比可到6,最大到8,传动效率一般为0.94~0.98。直齿锥齿轮传动传递功率可到370千瓦,圆周速度5米/秒。

斜齿锥齿轮传动运转平稳,齿轮承载能力较高,但制造较难,应用较少。曲线齿锥齿轮传动运转平稳,传递功率可到3700千瓦,圆周速度可到40米/秒以上。

3.双曲面齿轮传动 用于交错轴间的传动。单级传动比可到10,最大到100,传递功率可到750千瓦,传动效率一般为0.9~0.98,圆周速度可到30米/秒。

由于有轴线偏置距,可以避免小齿轮悬臂安装。广泛应用于汽车和拖拉机的传动中。

4.螺旋齿轮传动 用于交错间的传动,传动比可到5,承载能力较低,磨损严重,应用很少。 5.蜗杆传动 交错轴传动的主要形式,轴线交错角一般为90°。

蜗杆传动可获得很大的传动比,通常单级为8~80,用于传递运动时可达1500;传递功率可达4500千瓦;蜗杆的转速可到3万转/分;圆周速度可到70米/秒。蜗杆传动工作平稳,传动比准确,可以自锁,但自锁时传动效率低于0.5。

蜗杆传动齿面间滑动较大,发热量较多,传动效率低,通常为0.45~0.97。 6.圆弧齿轮传动 用凸凹圆弧做齿廓的齿轮传动。

空载时两齿廓是点接触,啮合过程中接触点沿轴线方向移动,靠纵向重合度大于1来获得连续传动。特点是接触强度和承载能力高,易于形成油膜,无根切现象,齿面磨损较均匀,跑合性能好;但对中心距、切齿深和螺旋角的误差敏感性很大,故对制造和安装精度要求高。

7.摆线齿轮传动 用摆线作齿廓的齿轮传动。这种传动齿面间接触应力较小,耐。

2.齿轮传动论文

齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。

按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。具有结构紧凑、效率高、寿命长等特点。

齿轮传动是指用主、从动轮轮齿直接、传递运动和动力的装置。 在所有的机械传动中,齿轮传动应用最广,可用来传递任意两轴之间的运动和动力。

齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。

但是制造齿轮需要有专门的设备,啮合传动会产生噪声。 [编辑本段]类型 (1)根据两轴的相对位置和轮齿的方向,可分为以下类型: <1>圆柱齿轮传动; <2>锥齿轮传动; <3>交错轴斜齿轮传动。

(2)根据齿轮的工作条件,可分为: <1>开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。 <2>半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭。

<3>闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确, 齿轮传动有良好的工作条件,是应用最广泛的齿轮传动。 [编辑本段]设计准则 针对齿轮五种失效形式,应分别确立相应的设计准则。

但是对于齿面磨损、塑性变形等,由于尚未建立起广为工程实际使用而且行之有效的计算方法及设计数据,所以目前设计齿轮传动时,通常只按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。对于高速大功率的齿轮传动(如航空发动机主传动、汽轮发电机组传动等),还要按保证齿面抗胶合能力的准则进行计算(参阅GB6413-1986)。

至于抵抗其它失效能力,目前虽然一般不进行计算,但应采取的措施,以增强轮齿抵抗这些失效的能力。 1、闭式齿轮传动 由实践得知,在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。

但对于齿面硬度很高、齿芯强度又低的齿轮(如用20、20Cr钢经渗碳后淬火的齿轮)或材质较脆的齿轮,通常则以保证齿根弯曲疲劳强度为主。如果两齿轮均为硬齿面且齿面硬度一样高时,则视具体情况而定。

功率较大的传动,例如输入功率超过75kW的闭式齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等,为了控制温升,还应作散热能力计算。 2、开式齿轮传动 开式(半开式)齿轮传动,按理应根据保证齿面抗磨损及齿根抗折断能力两准则进行计算,但如前所述,对齿面抗磨损能力的计算方法迄今尚不够完善,故对开式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为设计准则。

为了延长开式(半开式)齿轮传动的寿命,可视具体需要而将所求得的模数适当增大。 前已述之,对于齿轮的轮圈、轮辐、轮毂等部位的尺寸,通常仅作结构设计,不进行强度计算。

[编辑本段]齿轮传动类型 1.圆柱齿轮传动 用于平行轴间的传动,一般传动比单级可到8,最大20,两级可到45,最大60,三级可到200,最大300。传递功率可到10万千瓦,转速可到10万转/分,圆周速度可到300米/秒。

单级效率为0.96~0.99。直齿轮传动适用于中、低速传动。

斜齿轮传动运转平稳,适用于中、高速传动。人字齿轮传动适用于传递大功率和大转矩的传动。

圆柱齿轮传动的啮合形式有3种:外啮合齿轮传动,由两个外齿轮相啮合,两轮的转向相反;内啮合齿轮传动,由一个内齿轮和一个小的外齿轮相啮合,两轮的转向相同;齿轮齿条传动,可将齿轮的转动变为齿条的直线移动,或者相反。 2.锥齿轮传动 用于相交轴间的传动。

单级传动比可到6,最大到8,传动效率一般为0.94~0.98。直齿锥齿轮传动传递功率可到370千瓦,圆周速度5米/秒。

斜齿锥齿轮传动运转平稳,齿轮承载能力较高,但制造较难,应用较少。曲线齿锥齿轮传动运转平稳,传递功率可到3700千瓦,圆周速度可到40米/秒以上。

3.双曲面齿轮传动 用于交错轴间的传动。单级传动比可到10,最大到100,传递功率可到750千瓦,传动效率一般为0.9~0.98,圆周速度可到30米/秒。

由于有轴线偏置距,可以避免小齿轮悬臂安装。广泛应用于汽车和拖拉机的传动中。

4.螺旋齿轮传动 用于交错间的传动,传动比可到5,承载能力较低,磨损严重,应用很少。 5.蜗杆传动 交错轴传动的主要形式,轴线交错角一般为90°。

蜗杆传动可获得很大的传动比,通常单级为8~80,用于传递运动时可达1500;传递功率可达4500千瓦;蜗杆的转速可到3万转/分;圆周速度可到70米/秒。蜗杆传动工作平稳,传动比准确,可以自锁,但自锁时传动效率低于0.5。

蜗杆传动齿面间滑动较大,发热量较多,传动效率低,通常为0.45~0.97。 6.圆弧齿轮传动 用凸凹圆弧做齿廓的齿轮传动。

空载时两齿廓是点接触,啮合过程中接触点沿轴线方向移动,靠纵向重合度大于1来获得连续传动。特点是接触强度和承载能力高,易于形成油膜,无根切现象,齿面磨损较均匀,跑合性能好;但对中心距、切齿深和螺旋角的误差敏感性很大,故对制造和安装精度要求高。

7.摆线齿轮传动 用摆线作齿廓的齿轮传动。这种传动齿面间接触应力较小,耐磨性好,无根切现象,但制造。

3.齿轮传动设计毕业论文

单级斜齿圆柱齿轮传动设计+绞车传动

论文编号:JX146 所有图纸,论文字数:6739.页数:36

机械设计课程设计任务书

设计题目:单级斜齿圆柱齿轮传动设计+绞车传动

原始数据:

F=12000 F:卷筒圆周力

n=35(r/min) n:卷筒转速;

D=400mm D:滚筒直径。

设计工作量:

设计说明书一份

一张主要零件图(手工)

零号装配图一张 (CAD)

工作要求:

卷筒间歇工作,载荷平稳,传动可逆转,起动载荷为名义载荷的1.25倍。传送比误差为±5%。每隔二分工作一次,停机5分钟,允许误差为±5%。,使用年限10年,两班制

目 录

第一章、设计任务书…………….…………………………2

第二章、前言 ……………………………….…….………3

第三章、运动学与动力学计算………………………….……3

一、电动机的选择与计算 …………………….………….… 5

二、各级传动比的分配….……………………….…………5

三、计算各轴的转速,功率及转矩,列成表格……………….6

第四章、齿轮的设计及计算…………………….……………7

第五章、轴与轴承的计算与校核 …..………………………12

第六章、键等相关标准键的选择……………………………20

第七章、减速器的润滑与密封……………………………21

第八章、箱体的设计………………………………………22

第九章、设计小结…………………………………………24

第十章、参考资料………………………………………25

以上回答来自:

4.谁能提供一篇关于齿轮设计及加工工艺方面的毕业论文,谢谢啦```

克林根贝格螺旋锥齿轮设计及其CAD系统的开发 简单信息 论文专业:机械制造及其自动化 论文主题:克林根贝格螺旋锥齿轮 ObjectARX 设计计算 CAD系统 论文分类:TH322 TH112.5 论文形态:共 60 页 约 48,420 个字符 约 4.26 M内容 其他说明:论文作者及其毕业院校、导师姓名、撰写年份等隐私信息已被隐藏 论文阅读:下载全文 内容摘要 该文结合克林根贝格螺旋锥齿轮的研究现状,综述了克林根贝格螺旋锥齿轮设计制造的基本知识.全面整理了克林根贝格公司的KN3028标准,对原有的设计计算与检验过程通过计算机语言进行实现,开发该齿轮的设计CAD系统.该系统利用AutoCAD 2000作为开发平台,ObjectARX作为开发工具.系统在编程实现时,利用了面向对象的特性,保证以后可以对系统进行升级.系统运行在AutoCAD 2000环境下,设计参数的输入和输出通过对话框来实现.通过对齿轮参数的计算,用户可以查看数据并对其进行检验,如果不符合生产要求,可以返回对参数进行修改.在齿轮设计计算的基础上,通过使用参数化绘图技术,操纵AutoCAD所提供的对象,完成齿轮的二维图形的绘制,实现尺寸的自动标注,将设计与绘图两部分连接起来,形成一套可靠的、实用的锥齿轮计算机辅助设计系统. 全文目录 文摘 英文文摘 第一章 绪论 1.1课题的背景及意义 1.2克林根贝格锥齿轮研究的必要性和研究现状 1.2.1克林根贝格锥齿轮研究的必要性 1.2.2克林根贝格锥齿轮的理论研究现状 1.3 CAD技术的发展历史和趋势 1.3.1 CAD技术的发展历史 1.3.2 CAD技术的发展趋势 1.4面向对象技术 1.4.1面向对象技术的发展趋势 1.4.2面向对象的概念 1.5论文研究工作 1.5.1论文的研究方法 1.5.2论文的研究内容 第二章 AutoCAD 2000环境下ObjectARX开发工具简介 2.1 AutoCAD 2000开发系统简介 2.1.1为什么要使用AutoCAD开发系统 2.1.2开发系统介绍 2.1.3 AutoCAD 2000各种开发系统的比较及选用 2.2 AutoCAD 2000中的ObjectARX开发工具 2.2.1 ObjectARX应用程序的特点 2.2.2 ObjectARX的组成 2.2.3 ObjectARX应用程序的功能 2.2.4运行ObjectARX的软硬件环境 第三章 克林根贝格锥齿轮设计与加工的基本理论概要 3.1克林根贝格锥齿轮的齿形特点 3.1.1 Cyclo-Palloid齿制的发展 3.1.2“HPG”加工法简介 3.2克林根贝格螺旋锥齿轮的基本加工原理和特点 3.2.1成型原理 3.2.2切齿机床及刀盘 3.2.3克林根贝格锥齿轮的加工精度 3.2.4克林根贝格锥齿轮的承载能力 3.2.5应用范围 3.3克林根贝格螺旋锥齿轮的轮坯设计 3.3.1概述 3.3.2基本参数及其选择 3.3.3齿轮变位系数及其确定 3.3.4平面产形轮参数和机床间距Md 3.3.5平面产形轮的检查 3.3.6“刀盘干涉”的检查 3.4机床调整参数 3.4.1刀位装定角τ 3.4.2摇台角λ 3.4.3刀盘的装定角△M 3.5鼓形量与刀盘偏心值的关系 3.6克林根贝格螺旋锥齿轮的切齿及切齿计算 3.6.1锥齿轮的切齿 3.6.2切齿计算 第四章 设计CAD系统的过程分析 4.1引言 4.2系统要求分析 4.2.1需求分析 4.2.2分析的方法 4.2.3齿轮设计CAD系统的要求分析 4.3系统的参数计算与检验部分 4.4设计CAD系统的编程实现 4.4.1 AutoCAD环境下的对话框 4.4.2创建ARX应用程序的过程 4.5运行实例 第五章 参数化绘图 5.1参数化绘图概述 5.1.1参数化绘图的意义 5.1.2参数化绘图的表现形式 5.1.3参数化绘图的基本方法 5.2程序驱动法参数化绘图方法 5.3绘图环境的设置 5.4绘图实例 第六章 结论与展望 6.1结论 6.2展望 参考文献 致 谢。

5.齿轮设计论文关于减速机的

下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3.32*10e8 N2=N1/5=6.64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95*600MPa=570MPa [σH]2==0.98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25*3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318*1*tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6*1 )1*1 +0.23*10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。

故载荷系数 K=KAKVKHαKHβ=1*1.03*1.4*1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1*1.03*1.4*1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。

2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55'50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。

其他有关尺寸参看大齿轮零件图。

6.螺旋锥齿轮论文写一篇关于螺旋锥齿轮加工的论文

计算机技术已经触及了我们生活的所有领域,从获取机票、购买商品到接受医疗咨询等。

这一变化同样对制造业产生了巨大影响,加工技术的改进导致产品质量不断提高,价格持续下降。然而在齿轮制造业,螺旋锥齿轮的轮齿接触区检测这一关键工序相对而言却变化很小。

开发一个新产品的螺旋锥齿轮副,其试切开发过程需耗时几个月,花费数千美元。 为了以更低价格的产品来增加全球竞争力,锥齿轮成为实现下一代计算机化制造的一个主要目标。

为了应对这一挑战,Arrow齿轮公司已经实现了螺旋锥齿轮开发方式的更新换代,从而开辟了一个新纪元。 本文将提供锥齿轮开发的一些基本信息以及Arrow公司为了获得最好的质量,同时降低开发费用所采用的具体程序和工艺技术。

接触区和齿轮位移的基本概念 接触区形态是螺旋锥齿轮设计的一个关键特性。简单地说,接触区就是当齿轮旋转进入啮合直至脱离啮合期间,轮齿相互接触的区域。

接触区采用以下步骤进行检测:在轮齿上涂覆一层专用的标记化合物,然后在一台检验机上啮合运行。 目视观察到化合物被破坏的区域就是接触区,需要由经验丰富的检验人员来解释观察到的结果。

为了将接触检测结果归档,可以用胶带纸贴在齿面上,再将接触印痕转印在纸上。 当一个齿轮被安装在齿轮箱里,并提供动力使其按指定用途运转时,齿轮轮齿上承受着各种不同的压力或载荷,包括箱体变形、轴承运动和温度变化等。

当轮齿承受这些变化时,接触区形态也将随之发生变化。 同一齿轮在非常轻的载荷下和非常重的载荷下接触区的形态不同。

有一个常用的经验法则:载荷越大,接触区也越大。 在下列情况下,接触区形态显得十分重要:对于在载荷下正常工作的齿轮,接触区必须具有一定形状并处于一定位置。

一般来说,承载下的理想轮齿接触区应位于齿面中间部位,避免在齿面边缘接触。 在齿轮箱工作状态下评估齿轮接触区形态时,需要考虑的另一个关键问题是齿轮的位移。

许多齿轮箱在运行时,齿轮及齿轮轴并不保持在一个固定的原始方位上。承载引起的力和热应力可导致齿轮箱部件产生明显的运动,偏离其原来的位置。

可能会出现4种不同的典型运动方式:偏置,小齿轮进入和脱离啮合,大齿轮进入和脱离啮合以及轴间夹角。这些运动引起了齿轮的位移,此外还可能出现这4种运动方式的任意组合。

对于航空航天用齿轮箱,将重量减至最小是非常重要的。由于所用齿轮的质量通常较小,因此齿轮的位移量较大。

另一方面,对于部件刚性很好的商用齿轮箱而言,其位移量不在一个数量级上。 开发接触区的传统方法 接触区的尺寸和位置一直是锥齿轮设计中需要考虑的主要因素。

多年来为获得好的接触区形态所采用的方法,现在仍然为绝大多数齿轮生产厂商所沿用。 获得理想接触区的传统方法按如以下步骤操作:首先,由一位工程师根据经验确定齿轮的几何参数,使之能满足提供正确接触区的要求。

然后加工出齿轮轮齿的初切齿廓。完成大轮和小轮的加工后,将它们装在检验机上啮合运转。

一般情况下,第一次试切所获得的接触区形态不正确,这就需要返回第一步,改变磨齿机的相关参数设置,然后再加工一个新的小齿轮,重新进行检测。这一试切过程可能需要反复多次,直至获得具有所需接触区位置的最佳试切齿轮。

但是,该齿轮装入齿轮箱后在承载情况下的工作性能如何?接触区将是怎样的形态?要回答这一问题,在试切过程中还需采取其它一些步骤。 首先,将齿轮装入齿轮箱,在轻载荷下运转以检测接触区的运动。

然后通过目视观察,检测在啮合齿面上出现轻微磨损的接触区。 如果接触区形态不正确(通常如此),就必须重新设置磨齿机的加工参数,然后重新磨制另一个小轮。

如此循环进行,直至在全载荷运行状态下获得所需要的合适接触区。 对于一个新的锥齿轮设计而言,这一试切过程可能需要花费几个月的时间。

虽然既费时又费钱,但它却是不得不去做的工作。 基于计算机的新的锥齿轮开发技术的出现,从根本上改变了这种状况。

开发接触区的新方法 为了克服传统方法的局限性,美国Arrow齿轮公司完成了一套用于开发锥齿轮接触区的先进系统。与传统方法相比,该系统大大节省了开发所需的时间和资金。

该系统将当代先进的软件与加工机床结合在一起,其主要组成单元包括格里森公司的AGE、CAGE、MINIGAGE、加载TCA和T-900有限元分析软件包等。 至于加工机床,该系统使用了格里森公司的凤凰数控切齿机和凤凰数控磨齿机,以及一台蔡司-赫夫勒的齿轮测量中心。

关于该系统的具体使用情况后面将会介绍,这里先列举它的一些亮点。 采用了开发软件,工程师们可以建立虚拟模型来预测齿轮在实际工况下的传动性能,由此可得到加工机床所需的参数设置。

此外,这些机床调整的设置量自动下载到机床上,大大减少了机床参数设置所需的时间。采用该系统最具意义的是,只需在齿轮加工车间进行一两次试切,就可获得满足理想齿轮接触区要求的机床最佳参数设置。

从本质上说,该系统淘汰了以前必须进行的试切过程。由于缩短了开发时间,齿轮制造商能为用户节约大量经费。

通过计算机。

7.齿轮设计论文关于减速机的

下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3.32*10e8 N2=N1/5=6.64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95*600MPa=570MPa [σH]2==0.98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25*3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318*1*tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6*1 )1*1 +0.23*10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。

故载荷系数 K=KAKVKHαKHβ=1*1.03*1.4*1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1*1.03*1.4*1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。

2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55'50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。

其他有关尺寸参看大齿轮零件图。

8.求二级斜齿轮减速器设计毕业论文的相关资料

基于CATIA和ADAMS的二级斜齿轮减速器的虚拟样机建模和动力学仿真摘要:使用CATIA三维建模软件创建二级斜齿轮减速器的三维模型,通过SimDesigner转换该模型,实现与ADAMS机械动力学仿真软件的无缝连接,在ADAMS中建立虚拟样机模型并对其进行动力学仿真,得出各齿轮轴的转速以及齿轮间的啮合力并进行分析,获得比较可靠的结果。

关键词:虚拟样机;二级斜齿轮减速器;CATIA;SimDesigner;ADAMS 减速器是工作于原动机和工作机间用于降低速度、增大扭矩的一类传动装置,被广泛应用于各类机械中,在机械制造业中有着举足轻重的地位。为提高设计效率和确保减速器工作平稳,有必要对其进行虚拟样机建模以及动力学分析。

CATIA是美国IBM公司和法国达索公司(Dassault System)开发的一款优秀的三维设计软件,其强大的曲面设计功能使其成为车辆、船舶以及航空航天等领域的主流CAD软件,良好的参数化设计思路也使得设计工作更为轻松。ADAMS是美国MSC公司开发的动力学仿真分析软件,能对虚拟样机进行静力学、运动学、动力学仿真分析。

而SimDesigner则是MSC公司开发的CATIA与ADAMS间的数据接口,能实现两者之间的无缝联结。现结合CATIA和ADAMS两者的优点,使用CATIA进行减速器的三维建模,通过SimDesigner将其导入到ADAMS中进行虚拟仿真分析,得到比较可靠的数据,为减速器的优化设计提供依据。

1虚拟样机建模1.1斜齿轮的参数化建模要建立斜齿轮的模型关键在于确定齿轮的渐开线以及螺旋线,并尽量用参数和公式加以描述以实现参数化设计。先用(fx)中设置如下参数:`法面模数`,`法面齿顶高系数`,`变形系数`,类型为rea(l实数);`齿数z`,类型为integer(整数);`压力角`,`螺旋角`,类型为angle(角度);`齿高`,`螺距`,类型为length(长度),并根据齿轮的性质输入具体数值。

然后设置参数如下:`分度圆半径`,`基圆半径`,`齿顶圆半径`,`齿根圆半径`,类型为length(长度),并输入如下公式:`分度圆半径`=`模数`*`齿数z`/2/cosβ*1mm`基圆半径`=`分度圆半径`*co(s`压力角`)`齿顶圆半径`=`分度圆半径`+`模数`*`法面齿顶高系数`*cosβ*1mm+`模数`*`变形系数`*1mm`齿根圆半径`=`齿顶圆半径`-`齿高``螺距`=2*PI*`分度圆半径r`/tan(`螺旋角β`)要绘制渐开线,需要确定渐开线的直角坐标方程。如图1所示,渐开线方程为:x=r*sinθ-r*θ*cosθz=r*cosθ+r*θ*sinθ 根据这一方程,在GSD(Generative Shape Design)模块中,利用fog设置两个参数:x,t,,分别为length(长度),real(实数)类型。

并输入如下方程:x=`基圆半径`*sin(t*PI*1rad)-基圆半径`*t*PI*co(st*PI*1rad)同理,再设置z和t,类型分别为length(长度),rea(l实数)类型。输入如下方程:z=`基圆半径`*cos(t*PI*1rad)+`基圆半径`*t*PI*sin(t*PI*1rad)利用上面两个方程可以产生一系列渐开线上的点,再利用spline(样条线)命令即可得到一条渐开线。

然后利用Symmetry(镜像)、Split(分割)、Circle Pattern(圆周阵列)等操作完成整个齿轮的轮廓(如图2)。在绘制的过程中,相关的圆的半径、角度等都应使用上面的参数或用它们表示,以实现参数化设计. 完成齿轮的轮廓后使用Helix(空间螺旋线)命令产生螺旋线,所需的数据同样应采用上述参数表示。

最后,从Generative Shape Design模块切换到Part Design(零件设计)模块,用Rib(实体扫掠)功能,以刚生成的齿轮轮廓为轮廓,螺旋线为中心线,扫掠后得到一个斜齿轮的实体模型,再对其进行其他必要的操作便可得到想要的斜齿轮。1.2二级斜齿轮减速器的建模过程根据设计要求,按表1输入斜齿轮模型中相应参数的值,分别得到相应的斜齿轮模型。

使用STEP函数step(time,0,0d,0.2,9000d)定义其大小,类型选取Velocity;在输出轴上添加负载Torque,大小为1386000;啮合的齿轮间添加Solid to Solid Contact,大齿轮材料取40Cr钢,小齿轮材料取45钢,根据Herz碰撞理论,由公式K=43R12E(0其中,1R=1R1+1R2,1E0=1-V12E1+1-V22E2,V1、V2为两接触物体材料的泊松比,E1、E2两接触物体材料的弹性模量,K为接触强度系数,R1、R2分别为两齿轮的接触半径)计算得,低速级各参数分别为,Stiffness为1.15E+005,ForceExponent为7.36,Damping为50.0,Penetration Depth为0.1,高速级各参数为,Stiffness为1.15E+005,Force Exponent为8.84,Damping为50.0,Penetration Depth为0.1。2.2虚拟样机仿真设定仿真时间为t=0.5s,步长Step Size=0.0001s,仿真结果如图4至图8所示。

3结束语由理论计算得,输入轴、中间轴和输出轴的转速分别为:9000degree/second,2330degree/second,822degree/second。从上图可知:虚拟样机的输出结果与理论值符合得很好,但是由于齿轮传动的振动和冲击会产生轻微的周期性波动。

因此,总体而言,该虚拟样机满足传动比要求。从上图可知:两组啮合齿轮的啮合力都在一个值上下动,而且高速级啮合齿轮的啮合力比低速级小且波动更大,与实际的齿轮啮合相吻合。

由理论计算得:高速级和低速级的啮合力分别为5316N,11568N。与上图相比,可知仿真值。

关于齿轮毕业论文

电传动毕业论文(急求一片关于电气传动的论文)

1.急求一片关于电气传动的论文

人工智能在电气传动中运用的进展(1) 摘要:本文论述了人工智能在电气传动领域的发展概况。

其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等 关键词:神经网络控制 模糊神经元控制 自适应控制 一、引 言 人工智能控制技术一直没能取代古典控制方法。但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。

这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。

由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。

但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。具信使用人工智能的直流传动技术能得到进一步的提高。

高性能的交流传动瞬态转矩的控制性能类似于他励直流电机的控制性能。现有两种高性能交流传动的控制方法:矢量控制(VC)和直接转矩控制(DTC)。

矢量控制是德国的研究人员在二十多年前提出的,现在已经比较成熟,并已广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。尽管在高性能驱动产品中使用AI技术会极大地提高产品的性能,可是到目前为止只有两个厂家在他们的产品中使用了人工智能(AI)控制器;直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在ABB公司已向市场推出了直接转矩控制的传动产品,使得人们对直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。

英国CT公司(Control Technique plc)推出了世界上第一台统一变频器(Unidrive),其他一些公司也推出了相应的产品,现在这些产品都没有使用人工智能技术,“统一”的概念完全依靠软件实现,这就为软计算技术的实现提供了条件。具信在将来统一变频器将使用直接转矩控制以及各种形式的矢量控制,单一使用直接转矩控制技术的产品将遭到淘汰。

本文也将讨论人工智能在统一变频器中运用的一些方面,同时也包括AI控制器在VC和DTC中的运用。 AI控制器能否工业运用的关键一点是:实现这些控制器的硬件和软件。

大多数DSP控制的驱动器都有足够的计算能力实现人工智能的算法,并且都能得到大多数人工智能控制器软计算所需要的信号。通过运用适当的控制策略,就能大大地减少计算和硬件的负担,从而把注意力集中于提高驱动器的性能、鲁棒性和可靠性上面。

在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。

二、人工智能控制器的优势 文献中,不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。

这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下: (1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道) (2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。

例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更小。 (3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。 (5)运用语言和响应信息可能设计它们。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。

(7)它们对新数据或新信息具有很好的适应性。 (8)它们能解决常规方法不能解决的问题。

(9)它们具有很好的抗噪声干扰能力。 (10)它们的实现十分便宜,特别是使用最小配置时。

(11)它们很容易扩展和修改。 人工智能控制器可分为监督、非监督或增强学习型三种。

常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。

常规模糊控制器的规则初值和模糊规则表是既定“a-priori”型,这就使得调整困难,当系统得不到。

2.急求一片关于电气传动的论文

人工智能在电气传动中运用的进展(1) 摘要:本文论述了人工智能在电气传动领域的发展概况。

其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等 关键词:神经网络控制 模糊神经元控制 自适应控制 一、引 言 人工智能控制技术一直没能取代古典控制方法。但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。

这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。

由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。

但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。具信使用人工智能的直流传动技术能得到进一步的提高。

高性能的交流传动瞬态转矩的控制性能类似于他励直流电机的控制性能。现有两种高性能交流传动的控制方法:矢量控制(VC)和直接转矩控制(DTC)。

矢量控制是德国的研究人员在二十多年前提出的,现在已经比较成熟,并已广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。尽管在高性能驱动产品中使用AI技术会极大地提高产品的性能,可是到目前为止只有两个厂家在他们的产品中使用了人工智能(AI)控制器;直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在ABB公司已向市场推出了直接转矩控制的传动产品,使得人们对直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。

英国CT公司(Control Technique plc)推出了世界上第一台统一变频器(Unidrive),其他一些公司也推出了相应的产品,现在这些产品都没有使用人工智能技术,“统一”的概念完全依靠软件实现,这就为软计算技术的实现提供了条件。具信在将来统一变频器将使用直接转矩控制以及各种形式的矢量控制,单一使用直接转矩控制技术的产品将遭到淘汰。

本文也将讨论人工智能在统一变频器中运用的一些方面,同时也包括AI控制器在VC和DTC中的运用。 AI控制器能否工业运用的关键一点是:实现这些控制器的硬件和软件。

大多数DSP控制的驱动器都有足够的计算能力实现人工智能的算法,并且都能得到大多数人工智能控制器软计算所需要的信号。通过运用适当的控制策略,就能大大地减少计算和硬件的负担,从而把注意力集中于提高驱动器的性能、鲁棒性和可靠性上面。

在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。

二、人工智能控制器的优势 文献中,不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。

这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下: (1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道) (2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。

例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更小。 (3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。 (5)运用语言和响应信息可能设计它们。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。

(7)它们对新数据或新信息具有很好的适应性。 (8)它们能解决常规方法不能解决的问题。

(9)它们具有很好的抗噪声干扰能力。 (10)它们的实现十分便宜,特别是使用最小配置时。

(11)它们很容易扩展和修改。 人工智能控制器可分为监督、非监督或增强学习型三种。

常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。

常规模糊控制器的规则初值和模糊规则表是既定“a-priori”型,这就使得调整困难,当系统得不到“a-priori”(既定)信息时,。

3.哪里有关于内燃机车(东风4B)的柴油机.电传动.制动方面的论文

蒸汽机车 就不说了 蒸气机原理中学学过物理的都知道1988年大同机车厂生产了最后一台 前进型机车7207号后 国内正规企业应该没有再新制过干线内燃机车2004年底 铁道部已经强制将内燃机车退出干线运营了 内燃机车 国内内燃机车是按传动装置来命名的 传动装置有三种1、电传动 直流电传动、交直流电传动和交直交(简称交流)电传动。

东风、东风2和东风3型机车,为直流电传动机车;东风4型以后研制的电传动内燃机车,均为交直流电传动机车1999年以后 陆续出现了一些交流传动机车 比较成功的有大连厂的东风4DJ型 和戚墅堰厂的东风8CJ型 国产电传动机车都命名为东风*型 进口的则是ND*型 电传动机车在国内最知名的是由戚墅堰机车车辆厂制造的东风11G型和东风8B型2、液力传动 一般(机械换向)液力传动和液力换向的液力传动;另有一种为液力一机械传动。北京型和东方红系列机车均为液力传动机车;多数GK系列工矿机车为液力换向机车。

国产的液力传动一般是东方红*型和北京*型 还有工矿机车GK系列 进口的则是NY*型 液力传动机车在国内最知名的 就属美国通用电器公司 的ND5型了3、机械传动 这个国内应该很少见 只在小功率的地方铁路和工矿机车上少有运用 我国干线内燃机车以电传动东风型为主 液力传动的现在比较少了 不过以前的首长专列都是用联邦德国汉寿尔工厂NY6、NY7牵引的 电传动内燃机车 只有一台戚墅堰机车车辆厂制造的东风11Z型 用来牵引专列 顺便说一下内燃机车传动装置的作用 每循环供油量一定时,柴油机的扭矩随转速的变化不大;柴油机的功率与转速近似正比变化,只有在标定转速下才可能达到标定功率。为了使柴油机的功率得到充分发挥和合理利用,实现机车牵引特性的要求,内燃机车必须设传动装置,作为柴油机曲轴和机车动轴的中间环节,将柴油机的扭矩、功率——转速特性转换为内燃机车的牵引特性:即机车起动和低速牵引时有较大的牵引力;列车起动后,当机车主控制器手柄处于给定位置,柴油机转速、功率一定,列车运行阻力小于机车牵引力时(加速力为正值),机车速度沿牵引特性曲线提高(牵引力随之减小);当列车阻力大于机车牵引力时 (加速力为负值),机车速度沿牵引特性曲线下降(牵引力随之增大);同时,通过传动装置实现机车换向、动力制动等工况转换功能,满足列车牵引的要求。

内燃机车的分类(1)按用途分:干线内燃机车,包括货运内燃机车和客运内燃机车;调车内燃机车和调车小运转内燃机车;工矿内燃机车;地方铁路内燃机车。(2)按传动方式分:电传动、液力传动和机械传动内燃机车。

电传动内燃机车,可分为直流电传动、交直流电传动和交流电传动内燃机车。液力传动内燃机车,可分为普通液力传动、液力一机械传动和液力换向的液力传动内燃机车。

后者简称为液力换向内燃机车。(3)按铁路轨距分:标准轨、宽轨和窄轨内燃机车。

标准轨轨距为1435mm;宽轨轨距有 1520mmn、1600mmm、1665mm和1676mm、4种;窄轨轨距在597mm 至1219mm之间,共有19种,典型的轨距有600mm、762mm、900mn、lOOOmm、和1067mm。后两种轨距的机车,一般称为米轨机车。

(4)按机车装用主柴油机台数分:单机组内燃机车和双机组内燃机车。(5)按能否实行重联牵引分:非重联内燃机车和重联内燃机车。

(6)按走行部结构分:车架式内燃机车和转向架式内燃机车。(7)按机车轴数分:二轴、三轴、四轴、五轴、六轴和八轴内燃机车。

(8)按机车轴式分:A-A、A0-A0、B-B、B0-B0、B-B-B、B0-B0-B0、C-C、C0-C0、D-D、D0-D0、A01A0-A01A0、AAA-B轴式内燃机车。(9)按司机室数量分:单司机室和双司机室内燃机车,还有无司机室内燃机车。

内燃机车的组成 内燃机车,是采用内燃机作为动力装置的机车。注:铁道机车用的内燃机绝大多数是柴油机。

内燃机车由下列部分组成:柴油机、主传动装置、辅助传动装置、车体(包括司机室)、走行部及各辅助系统。机车辅助系统包括:燃油系统、机油系统、冷却水系统、预热系统、空气制动系统及其他用风系统、控制系统、照明系统、充电系统、检测系统、诊断系统和显示记录系统等。

简单说一下应用最广的交直流电传动机车动作原理 机车蓄电池供96V启动 80KW启动发电机 启动发电机发动机车柴油机 柴油机运转带动同步主发电机运行 45KW的感应子励磁机通过整流输出直流电给同步主发电机转子励磁 主发电机正常发电 (当柴油机运转后 启动发电机转成他励发电机运行 发出110V恒定直流电,供给空压机以及一些机车辅助设备,另外再给机车蓄电池充电 ) 同步主发电机发出三相交流电 经过主整流柜 供给六台直流牵引电机 最后,机车启动 电力机车结构原理教内燃机车简单的多 随便介绍一下 太多了 打起来实在吃不消 电力机车是从接触网获取电能,再利用牵引电机驱动的机车,是非自带能源式的机车。电力机车种类1、直流电力机车 这种机车在国内应用最广 城市电车、地铁、铁道运输等方面都有应用 但受接触网电压的影响,机车功率受到一定限制2、单相低频交流电力机车 这种机车采用单相整流子牵引电机(现在也有用直流。

4.求一篇关于应用电子技术的毕业论文

现代电力电子技术浅探 电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。

电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。

电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。

当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。

变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。

类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。

MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。

新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。 二、电力电子技术的应用 1、一般工业 工业中大量应用各种交直流电动机。

直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。

大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。

还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。

电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输 电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。

直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。

除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。

一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。

如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

3、电力系统 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。

电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

直流输电在。

5.机电一体化毕业论文6000字

机电一体化毕业论文 绪论 现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。

在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。 一、机电一体化概要 机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。

由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。 因此,“机电一体化”涵盖“技术”和“产品”两个方面。

只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。

机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。

即机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。 二、机电一体化的发展状况 机电一体化的发展大体可以分为3个阶段。

20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。

特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起了积极的作用。那时研制和开发从总体上看还处于自发状态。

由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。 20世纪70~80年代为第二阶段,可称为蓬勃发展阶段。

这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的迅猛发展,为机电一体化的发展提供了充分的物质基础。

这个时期的特点是:①mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;②机电一体化技术和产品得到了极大发展;③各国均开始对机电一体化技术和产品给以很大的关注和支持。 20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。

一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地。

这些研究,将促使机电一体化进一步建立完整的基础和逐渐形成完整的科学体系。 我国是从20世纪80年代初才开始在这方面研究和应用。

国务院成立了机电一体化领导小组并将该技术列为“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向.三、机电一体化的发展趋势 机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。

因此,机电一体化的主要发展方向如下: 3.1智能化 智能化是21世纪机电一体化技术发展的一个重要发展方向。人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。

这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。

但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。 3.2模块化 模块化是一项重要而艰巨的工程。

由于机电一体化产品种类。

6.请一份机电一体化毕业论文

范文一:机电一体化毕业论文【内容摘要】:近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。

特别是乡镇企业及家用电器的迅速,更需要大量的中小功率电动机。由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。

本文主要介绍了电动机技术发展及现状、工作原理、电动机的运行维护。 【关键词】:技术现状 工作原理 运行维护 一、电动机技术发展及现状 电机是利用电磁感应原理工作的机械。

随着生产的发展而发展的,反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。

它应用广泛,种类繁多。性能各异,分类方法也很多。

电机常用的分类方法主要有两种:一种是按功能用途分,可分为发电机﹑电动机,﹑压器和控制电机四大类。电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械,也是最主要的用电设备,各种电动机消耗的电能占全国总发电量的60%~70%。

另一种分类方法是按照电机的结构或转速分类,可分为变压器和旋转电机.根据电源电流的不同旋转电机又分为直流电机和交流电机两大类.交流电机又分为同步电机和异步电机. 在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。

由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。 按照电动机的种类不同,电力拖动系统分为直流电力拖动系统和交流电力拖动系统两大类。

纵观电力拖动的发展过程,交,直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是唯一的一种电力拖动方式,19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应用,但随着生产技术的发展,特别是精密机械加工与冶金工业生产过程的进步,对电力拖动在起动,制动,正反转以及调速精度与范围等静态特性和动态响应方面提出了新的,更高的要求。

由于交流电力拖动比直流电力拖动在技术上难以实现这些要求,所以20世纪以来,在可逆,可调速与高精度的拖动技术领域中,相当时期内几乎都是采用直流电力拖动,而交流电力拖动则主要用于恒转速系统。 虽然直流电动机具有调速性能优异这一突出特点,但是由于它具有电刷与换向器(又称整流子),使得他的故障率较高,电动机的使用环境也受到了限制(如不能在有易爆气体及尘埃多的场合使用),其电压等级,额定转速,单机容量的发展也受到了限制。

所以,在20世纪60年代以后,随着电力电子技术的发展,半导体交流技术的交流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,为交流电力拖动的广泛应用创造了有利条件。

诸如交流电动机的串级调速,各种类型的变频调速,无换向器电动机调速等,使得交流电力拖动逐步具备了调速范围宽,稳态精度高,动态响应快以及在四象限做可逆运行等良好的技术性能,在调速性能方面完全可与直流电力拖动媲美。除此之外,由于交流电力拖动具有调速性能优良,维修费用低等优点,因此它今后将广泛应用于各个工业电气自动化领域中,并逐步取代直流电力拖动而成为电力拖动的主流。

经历了100多年的技术发展,电动机自身的理论基本成熟。随着电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高。

电磁材料的性能不断提高,电工电子技术的广泛应用,为电动机的发展注入了新的活力。 未来电动机将会沿着单位功率体积更小、机电能量转换效率更高、控制更灵活的方向继续发展。

一批"巨无霸"电机、一批"光怪陆奇"电机将同时展现在世人眼前。 二、电动机工作原理 目前较常用的主要是交流电动机,它可分为两种:1、三相异步电动机。

2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电器上。

下面以三相异步电动机为例介绍其基本工作原理。 (公文有约) 下图所示为一 台三相笼型异步电动机的示意图。

在定子铁心里嵌放着对称的三相绕组U1-U2、V1-V2、W1-W2。转子槽内放有导条,导条两端用短路环短接起来,形成一个笼型的闭合绕组。

定子三相绕组可接成星形,也可以接成三角形。 由旋转磁场理论分析可知,如果定子对称三相绕组被施以对称的三相电压,就有对称的三相电流流过,并且会在电机的气隙中形成一个旋转的磁场,这个磁场的转速n1称为同步转速,它与电网的频率f1及电机的磁极对数p的。

7.机电方面的毕业论文怎么写

我校机电系机械专业的一篇论文: 【论文摘要】 机械传动式轮胎定型硫化机横梁运动形式已知有三种,即升降翻转运动,升降平移运动,直接升降运动。

三种运动都是由曲柄滑块机构实现的。由于在前两种运动中横梁必须通过一拐点,因而其滑块变异为导轮,而直接升降运动,既可使用滑块,也可使用导轮。

曲柄由减速机经减速齿轮获得转。曲柄的固定支点为机架,运动支点与主连杆下端活销连接,主连杆上端与横梁端轴活销连接。

曲柄转动时,经由主连杆推动横梁端轴沿既定的轨迹运动。三种运动形式中,前两种运动的轨迹基本相同,但辅助运动不同,而第三种只是前两种运动的一部分。

由此,在硫化机开模到终点时,横梁处于三种不同的状态。因而适用于不同类型的硫化机。

一、升降翻转型运动 据文献介绍,升降翻转运动形式分为:间接导向的升降翻转运动;直接导向的升降翻转运动;单槽杠杆导向的升降翻转运动。其中最常用也最简单的是直接导向的升降翻转运动。

单槽杠杆导向的升降翻转运动在大规格B型定型硫化机如1900B,2160B等机型上曾经使用过,但已逐渐被直接导向的升降翻转运动取代。而间接导向的升降翻转运动在国内的定型硫化机上尚未见使用。

本文介绍的升降翻转型运动就是直接导向的升降翻转型运动。梁端轴外的主导轮和副连杆上的副导轮,直接讨论横梁端轴的运动。

横梁的运动轨道由一竖直开式主导槽和与其相接且夹角小于90°的开式导轨组成。为保持横梁运动的平稳性并实现横梁的自转,还有一个与开式主导槽平行的闭式副导槽。

开模时,横梁端轴在开式主导槽中上升,与横梁固定连接的副连杆 下 端中心轴在闭式副导槽中同步上升,此时横梁做平动。当横梁端轴离开竖直开式主导槽进入开式导轨后,横梁端轴的运动轨迹便不再与闭式副导槽平行。

此时,在主连杆和副连杆的共同作用下,横梁端轴在开式主导轨上边移动边自转。在横梁运动极限位置,主连杆两活销中心连线与曲柄支点中心连线重合。

实际运动中,一般不会到达极限位置。 Φ=α+β 其中α为副连杆与横梁竖直中心线间的夹角 β=arcSin 上式中,h,l是由横梁本身结构决定的,它们也决定了α的值。

由此式可知,横梁的翻转角度首先取决于其自身的结构。在其结构确定之后,与硫化机的开模长度有关。

开模到极限时,其翻转角度达到最大值。 直到二十世纪末,几乎所有的B型定型硫化机都使用升降翻转运动。

这是由B型硫化机的特点和它的适用范围决定的。首先,B型中心机构在装胎和卸胎时,胶囊都是完全拉直的,这使得上环升得很高。

其次,早期使用的硫化机的抓胎爪都是长式的,而且当时的轮胎主要是斜交胎,其生胎高度也较大。为了将生胎顺利地装入下模,中心机构上方必须有足够的空间。

使用升降翻转的运动形式,在完全开模的状态下,中心机构上方是完全敞开的,使装胎,卸胎操作十分方便。再次,我们知道,轮胎硫化后,与硫化模型间的粘着力是很大的。

其值不仅与轮胎和模型间的接触面积成正比,而且随着接触面积的增大,单位面积的粘着力也随着增大。这就使得大型轮胎如载重轮胎,工程轮胎等的粘着力非常之大,从而极大地增加了脱模的难度,甚至将轮胎拉伤。

为了减小粘着力,目前最常用的方法是往模型上喷洒隔离剂(硅油与水的混合液)。而要进行这种操作,只有在上模翻转一定的角度之后才便于进行。

一般地说,规格在1525以上的定型硫化机应该有自动喷洒隔离剂装置。国外企业对此比较重视,国内企业似乎不太在意。

几乎所有的轮胎定型硫化机的调模机构都使用螺纹副结构。在保持良好润滑的条件下,这种结构调整方便、可靠,承载能力也较大。

但螺纹副较其它配合的间隙偏大。尤其是调模机构受硫化室高温的影响,其螺纹副的间隙较常温下使用的又偏大。

硫化机开模合模时,螺蚊副由竖直状态转入接近水平状态或反过来由近水平状态转入垂直状态时,其间隙的分布是不断变化的。随着硫化机不断地开模、合模,这种间隙分布的变化周而复始地进行。

很显然,它不但影响运动的平稳性,也损害了螺纹副的配合精度,进而影响上下模间,上模和中心机构间的同轴度。在使用活络模时,横梁翻转后,活络模操纵缸的活塞杆压向一侧。

活塞杆与活络模的上胎侧模连接,又会影响模型的精度和寿命,还会影响活塞杆与缸的配合,甚至引起缸的泄漏。 二、升降平移型运动 采用升降平移运动形式时,横梁端轴的运动轨迹与采用升降翻转运动形式基本相同。

根本区别在于,它的副导槽是一个中心线与横梁端轴中心运动轨迹完全相同的封闭式导槽。因而在横梁的整个运动过程中,其端轴中心轨迹与副连杆轴中心的轨迹完全相同。

横梁保持平动。图2为其机构运动简图。

不考虑装胎机构固定在横梁前面的结构,与升降翻转型运动一样,完全开模时,中心机构上方也是完全敞开的。由于横梁没有翻转,调模机构的螺纹副始终处于竖直状态。

与升降翻转型运动相比,它不但提高了运动的平稳性,而且极大地提高了开合模的重复精度,更容易保证上下模型及其与中心机构间的同轴度,也改善了模型尤其是活络模型及其操纵缸的使用条件。 到二十世纪末,如。

电传动毕业论文

齿轮计算毕业论文

1.齿轮传动设计毕业论文

单级斜齿圆柱齿轮传动设计+绞车传动

论文编号:JX146 所有图纸,论文字数:6739.页数:36

机械设计课程设计任务书

设计题目:单级斜齿圆柱齿轮传动设计+绞车传动

原始数据:

F=12000 F:卷筒圆周力

n=35(r/min) n:卷筒转速;

D=400mm D:滚筒直径。

设计工作量:

设计说明书一份

一张主要零件图(手工)

零号装配图一张 (CAD)

工作要求:

卷筒间歇工作,载荷平稳,传动可逆转,起动载荷为名义载荷的1.25倍。传送比误差为±5%。每隔二分工作一次,停机5分钟,允许误差为±5%。,使用年限10年,两班制

目 录

第一章、设计任务书…………….…………………………2

第二章、前言 ……………………………….…….………3

第三章、运动学与动力学计算………………………….……3

一、电动机的选择与计算 …………………….………….… 5

二、各级传动比的分配….……………………….…………5

三、计算各轴的转速,功率及转矩,列成表格……………….6

第四章、齿轮的设计及计算…………………….……………7

第五章、轴与轴承的计算与校核 …..………………………12

第六章、键等相关标准键的选择……………………………20

第七章、减速器的润滑与密封……………………………21

第八章、箱体的设计………………………………………22

第九章、设计小结…………………………………………24

第十章、参考资料………………………………………25

以上回答来自:

2.齿轮传动论文

齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。

按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。具有结构紧凑、效率高、寿命长等特点。

齿轮传动是指用主、从动轮轮齿直接、传递运动和动力的装置。 在所有的机械传动中,齿轮传动应用最广,可用来传递任意两轴之间的运动和动力。

齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。

但是制造齿轮需要有专门的设备,啮合传动会产生噪声。 [编辑本段]类型 (1)根据两轴的相对位置和轮齿的方向,可分为以下类型: <1>圆柱齿轮传动; <2>锥齿轮传动; <3>交错轴斜齿轮传动。

(2)根据齿轮的工作条件,可分为: <1>开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。 <2>半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭。

<3>闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确, 齿轮传动有良好的工作条件,是应用最广泛的齿轮传动。 [编辑本段]设计准则 针对齿轮五种失效形式,应分别确立相应的设计准则。

但是对于齿面磨损、塑性变形等,由于尚未建立起广为工程实际使用而且行之有效的计算方法及设计数据,所以目前设计齿轮传动时,通常只按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。对于高速大功率的齿轮传动(如航空发动机主传动、汽轮发电机组传动等),还要按保证齿面抗胶合能力的准则进行计算(参阅GB6413-1986)。

至于抵抗其它失效能力,目前虽然一般不进行计算,但应采取的措施,以增强轮齿抵抗这些失效的能力。 1、闭式齿轮传动 由实践得知,在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。

但对于齿面硬度很高、齿芯强度又低的齿轮(如用20、20Cr钢经渗碳后淬火的齿轮)或材质较脆的齿轮,通常则以保证齿根弯曲疲劳强度为主。如果两齿轮均为硬齿面且齿面硬度一样高时,则视具体情况而定。

功率较大的传动,例如输入功率超过75kW的闭式齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等,为了控制温升,还应作散热能力计算。 2、开式齿轮传动 开式(半开式)齿轮传动,按理应根据保证齿面抗磨损及齿根抗折断能力两准则进行计算,但如前所述,对齿面抗磨损能力的计算方法迄今尚不够完善,故对开式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为设计准则。

为了延长开式(半开式)齿轮传动的寿命,可视具体需要而将所求得的模数适当增大。 前已述之,对于齿轮的轮圈、轮辐、轮毂等部位的尺寸,通常仅作结构设计,不进行强度计算。

[编辑本段]齿轮传动类型 1.圆柱齿轮传动 用于平行轴间的传动,一般传动比单级可到8,最大20,两级可到45,最大60,三级可到200,最大300。传递功率可到10万千瓦,转速可到10万转/分,圆周速度可到300米/秒。

单级效率为0.96~0.99。直齿轮传动适用于中、低速传动。

斜齿轮传动运转平稳,适用于中、高速传动。人字齿轮传动适用于传递大功率和大转矩的传动。

圆柱齿轮传动的啮合形式有3种:外啮合齿轮传动,由两个外齿轮相啮合,两轮的转向相反;内啮合齿轮传动,由一个内齿轮和一个小的外齿轮相啮合,两轮的转向相同;齿轮齿条传动,可将齿轮的转动变为齿条的直线移动,或者相反。 2.锥齿轮传动 用于相交轴间的传动。

单级传动比可到6,最大到8,传动效率一般为0.94~0.98。直齿锥齿轮传动传递功率可到370千瓦,圆周速度5米/秒。

斜齿锥齿轮传动运转平稳,齿轮承载能力较高,但制造较难,应用较少。曲线齿锥齿轮传动运转平稳,传递功率可到3700千瓦,圆周速度可到40米/秒以上。

3.双曲面齿轮传动 用于交错轴间的传动。单级传动比可到10,最大到100,传递功率可到750千瓦,传动效率一般为0.9~0.98,圆周速度可到30米/秒。

由于有轴线偏置距,可以避免小齿轮悬臂安装。广泛应用于汽车和拖拉机的传动中。

4.螺旋齿轮传动 用于交错间的传动,传动比可到5,承载能力较低,磨损严重,应用很少。 5.蜗杆传动 交错轴传动的主要形式,轴线交错角一般为90°。

蜗杆传动可获得很大的传动比,通常单级为8~80,用于传递运动时可达1500;传递功率可达4500千瓦;蜗杆的转速可到3万转/分;圆周速度可到70米/秒。蜗杆传动工作平稳,传动比准确,可以自锁,但自锁时传动效率低于0.5。

蜗杆传动齿面间滑动较大,发热量较多,传动效率低,通常为0.45~0.97。 6.圆弧齿轮传动 用凸凹圆弧做齿廓的齿轮传动。

空载时两齿廓是点接触,啮合过程中接触点沿轴线方向移动,靠纵向重合度大于1来获得连续传动。特点是接触强度和承载能力高,易于形成油膜,无根切现象,齿面磨损较均匀,跑合性能好;但对中心距、切齿深和螺旋角的误差敏感性很大,故对制造和安装精度要求高。

7.摆线齿轮传动 用摆线作齿廓的齿轮传动。这种传动齿面间接触应力较小,耐。

3.齿轮传动论文

齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。

按齿轮轴线的相对位置分平行轴圆柱齿轮传动、相交轴圆锥齿轮传动和交错轴螺旋齿轮传动。具有结构紧凑、效率高、寿命长等特点。

齿轮传动是指用主、从动轮轮齿直接、传递运动和动力的装置。 在所有的机械传动中,齿轮传动应用最广,可用来传递任意两轴之间的运动和动力。

齿轮传动的特点是:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围大。例如传递功率可以从很小至几十万千瓦;速度最高可达300m/s;齿轮直径可以从几毫米至二十多米。

但是制造齿轮需要有专门的设备,啮合传动会产生噪声。 [编辑本段]类型 (1)根据两轴的相对位置和轮齿的方向,可分为以下类型: <1>圆柱齿轮传动; <2>锥齿轮传动; <3>交错轴斜齿轮传动。

(2)根据齿轮的工作条件,可分为: <1>开式齿轮传动式齿轮传动,齿轮暴露在外,不能保证良好的润滑。 <2>半开式齿轮传动,齿轮浸入油池,有护罩,但不封闭。

<3>闭式齿轮传动,齿轮、轴和轴承等都装在封闭箱体内,润滑条件良好,灰沙不易进入,安装精确, 齿轮传动有良好的工作条件,是应用最广泛的齿轮传动。 [编辑本段]设计准则 针对齿轮五种失效形式,应分别确立相应的设计准则。

但是对于齿面磨损、塑性变形等,由于尚未建立起广为工程实际使用而且行之有效的计算方法及设计数据,所以目前设计齿轮传动时,通常只按保证齿根弯曲疲劳强度及保证齿面接触疲劳强度两准则进行计算。对于高速大功率的齿轮传动(如航空发动机主传动、汽轮发电机组传动等),还要按保证齿面抗胶合能力的准则进行计算(参阅GB6413-1986)。

至于抵抗其它失效能力,目前虽然一般不进行计算,但应采取的措施,以增强轮齿抵抗这些失效的能力。 1、闭式齿轮传动 由实践得知,在闭式齿轮传动中,通常以保证齿面接触疲劳强度为主。

但对于齿面硬度很高、齿芯强度又低的齿轮(如用20、20Cr钢经渗碳后淬火的齿轮)或材质较脆的齿轮,通常则以保证齿根弯曲疲劳强度为主。如果两齿轮均为硬齿面且齿面硬度一样高时,则视具体情况而定。

功率较大的传动,例如输入功率超过75kW的闭式齿轮传动,发热量大,易于导致润滑不良及轮齿胶合损伤等,为了控制温升,还应作散热能力计算。 2、开式齿轮传动 开式(半开式)齿轮传动,按理应根据保证齿面抗磨损及齿根抗折断能力两准则进行计算,但如前所述,对齿面抗磨损能力的计算方法迄今尚不够完善,故对开式(半开式)齿轮传动,目前仅以保证齿根弯曲疲劳强度作为设计准则。

为了延长开式(半开式)齿轮传动的寿命,可视具体需要而将所求得的模数适当增大。 前已述之,对于齿轮的轮圈、轮辐、轮毂等部位的尺寸,通常仅作结构设计,不进行强度计算。

[编辑本段]齿轮传动类型 1.圆柱齿轮传动 用于平行轴间的传动,一般传动比单级可到8,最大20,两级可到45,最大60,三级可到200,最大300。传递功率可到10万千瓦,转速可到10万转/分,圆周速度可到300米/秒。

单级效率为0.96~0.99。直齿轮传动适用于中、低速传动。

斜齿轮传动运转平稳,适用于中、高速传动。人字齿轮传动适用于传递大功率和大转矩的传动。

圆柱齿轮传动的啮合形式有3种:外啮合齿轮传动,由两个外齿轮相啮合,两轮的转向相反;内啮合齿轮传动,由一个内齿轮和一个小的外齿轮相啮合,两轮的转向相同;齿轮齿条传动,可将齿轮的转动变为齿条的直线移动,或者相反。 2.锥齿轮传动 用于相交轴间的传动。

单级传动比可到6,最大到8,传动效率一般为0.94~0.98。直齿锥齿轮传动传递功率可到370千瓦,圆周速度5米/秒。

斜齿锥齿轮传动运转平稳,齿轮承载能力较高,但制造较难,应用较少。曲线齿锥齿轮传动运转平稳,传递功率可到3700千瓦,圆周速度可到40米/秒以上。

3.双曲面齿轮传动 用于交错轴间的传动。单级传动比可到10,最大到100,传递功率可到750千瓦,传动效率一般为0.9~0.98,圆周速度可到30米/秒。

由于有轴线偏置距,可以避免小齿轮悬臂安装。广泛应用于汽车和拖拉机的传动中。

4.螺旋齿轮传动 用于交错间的传动,传动比可到5,承载能力较低,磨损严重,应用很少。 5.蜗杆传动 交错轴传动的主要形式,轴线交错角一般为90°。

蜗杆传动可获得很大的传动比,通常单级为8~80,用于传递运动时可达1500;传递功率可达4500千瓦;蜗杆的转速可到3万转/分;圆周速度可到70米/秒。蜗杆传动工作平稳,传动比准确,可以自锁,但自锁时传动效率低于0.5。

蜗杆传动齿面间滑动较大,发热量较多,传动效率低,通常为0.45~0.97。 6.圆弧齿轮传动 用凸凹圆弧做齿廓的齿轮传动。

空载时两齿廓是点接触,啮合过程中接触点沿轴线方向移动,靠纵向重合度大于1来获得连续传动。特点是接触强度和承载能力高,易于形成油膜,无根切现象,齿面磨损较均匀,跑合性能好;但对中心距、切齿深和螺旋角的误差敏感性很大,故对制造和安装精度要求高。

7.摆线齿轮传动 用摆线作齿廓的齿轮传动。这种传动齿面间接触应力较小,耐磨性好,无根切现象,但制造。

4.谁能提供一篇关于齿轮设计及加工工艺方面的毕业论文,谢谢啦```

克林根贝格螺旋锥齿轮设计及其CAD系统的开发 简单信息 论文专业:机械制造及其自动化 论文主题:克林根贝格螺旋锥齿轮 ObjectARX 设计计算 CAD系统 论文分类:TH322 TH112.5 论文形态:共 60 页 约 48,420 个字符 约 4.26 M内容 其他说明:论文作者及其毕业院校、导师姓名、撰写年份等隐私信息已被隐藏 论文阅读:下载全文 内容摘要 该文结合克林根贝格螺旋锥齿轮的研究现状,综述了克林根贝格螺旋锥齿轮设计制造的基本知识.全面整理了克林根贝格公司的KN3028标准,对原有的设计计算与检验过程通过计算机语言进行实现,开发该齿轮的设计CAD系统.该系统利用AutoCAD 2000作为开发平台,ObjectARX作为开发工具.系统在编程实现时,利用了面向对象的特性,保证以后可以对系统进行升级.系统运行在AutoCAD 2000环境下,设计参数的输入和输出通过对话框来实现.通过对齿轮参数的计算,用户可以查看数据并对其进行检验,如果不符合生产要求,可以返回对参数进行修改.在齿轮设计计算的基础上,通过使用参数化绘图技术,操纵AutoCAD所提供的对象,完成齿轮的二维图形的绘制,实现尺寸的自动标注,将设计与绘图两部分连接起来,形成一套可靠的、实用的锥齿轮计算机辅助设计系统. 全文目录 文摘 英文文摘 第一章 绪论 1.1课题的背景及意义 1.2克林根贝格锥齿轮研究的必要性和研究现状 1.2.1克林根贝格锥齿轮研究的必要性 1.2.2克林根贝格锥齿轮的理论研究现状 1.3 CAD技术的发展历史和趋势 1.3.1 CAD技术的发展历史 1.3.2 CAD技术的发展趋势 1.4面向对象技术 1.4.1面向对象技术的发展趋势 1.4.2面向对象的概念 1.5论文研究工作 1.5.1论文的研究方法 1.5.2论文的研究内容 第二章 AutoCAD 2000环境下ObjectARX开发工具简介 2.1 AutoCAD 2000开发系统简介 2.1.1为什么要使用AutoCAD开发系统 2.1.2开发系统介绍 2.1.3 AutoCAD 2000各种开发系统的比较及选用 2.2 AutoCAD 2000中的ObjectARX开发工具 2.2.1 ObjectARX应用程序的特点 2.2.2 ObjectARX的组成 2.2.3 ObjectARX应用程序的功能 2.2.4运行ObjectARX的软硬件环境 第三章 克林根贝格锥齿轮设计与加工的基本理论概要 3.1克林根贝格锥齿轮的齿形特点 3.1.1 Cyclo-Palloid齿制的发展 3.1.2“HPG”加工法简介 3.2克林根贝格螺旋锥齿轮的基本加工原理和特点 3.2.1成型原理 3.2.2切齿机床及刀盘 3.2.3克林根贝格锥齿轮的加工精度 3.2.4克林根贝格锥齿轮的承载能力 3.2.5应用范围 3.3克林根贝格螺旋锥齿轮的轮坯设计 3.3.1概述 3.3.2基本参数及其选择 3.3.3齿轮变位系数及其确定 3.3.4平面产形轮参数和机床间距Md 3.3.5平面产形轮的检查 3.3.6“刀盘干涉”的检查 3.4机床调整参数 3.4.1刀位装定角τ 3.4.2摇台角λ 3.4.3刀盘的装定角△M 3.5鼓形量与刀盘偏心值的关系 3.6克林根贝格螺旋锥齿轮的切齿及切齿计算 3.6.1锥齿轮的切齿 3.6.2切齿计算 第四章 设计CAD系统的过程分析 4.1引言 4.2系统要求分析 4.2.1需求分析 4.2.2分析的方法 4.2.3齿轮设计CAD系统的要求分析 4.3系统的参数计算与检验部分 4.4设计CAD系统的编程实现 4.4.1 AutoCAD环境下的对话框 4.4.2创建ARX应用程序的过程 4.5运行实例 第五章 参数化绘图 5.1参数化绘图概述 5.1.1参数化绘图的意义 5.1.2参数化绘图的表现形式 5.1.3参数化绘图的基本方法 5.2程序驱动法参数化绘图方法 5.3绘图环境的设置 5.4绘图实例 第六章 结论与展望 6.1结论 6.2展望 参考文献 致 谢。

5.齿轮设计论文关于减速机的

下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3.32*10e8 N2=N1/5=6.64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95*600MPa=570MPa [σH]2==0.98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25*3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318*1*tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6*1 )1*1 +0.23*10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。

故载荷系数 K=KAKVKHαKHβ=1*1.03*1.4*1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1*1.03*1.4*1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。

2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55'50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。

其他有关尺寸参看大齿轮零件图。

6.齿轮设计论文关于减速机的

下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3.32*10e8 N2=N1/5=6.64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95*600MPa=570MPa [σH]2==0.98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25*3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318*1*tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6*1 )1*1 +0.23*10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。

故载荷系数 K=KAKVKHαKHβ=1*1.03*1.4*1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1*1.03*1.4*1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。

2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55'50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。

其他有关尺寸参看大齿轮零件图。

7.齿轮设计论文关于减速机的要求是:同过对减速剂齿轮的设计了解齿轮

下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算1.选精度等级、材料及齿数1)材料及热处理;选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

2)精度等级选用7级精度;3)试选小齿轮齿数z1=20,大齿轮齿数z2=100的;4)选取螺旋角。初选螺旋角β=14°2.按齿面接触强度设计因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算按式(10—21)试算,即dt≥1)确定公式内的各计算数值(1)试选Kt=1。

6(2)由图10-30选取区域系数ZH=2。433(3)由表10-7选取尺宽系数φd=1(4)由图10-26查得εα1=0。

75,εα2=0。87,则εα=εα1+εα2=1。

62(5)由表10-6查得材料的弹性影响系数ZE=189。 8Mpa(6)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;(7)由式10-13计算应力循环次数N1=60n1jLh=60*192*1*(2*8*300*5)=3。

32*10e8N2=N1/5=6。64*107(8)由图10-19查得接触疲劳寿命系数KHN1=0。

95;KHN2=0。98(9)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由式(10-12)得[σH]1==0。

95*600MPa=570MPa[σH]2==0。98*550MPa=539MPa[σH]=[σH]1+[σH]2/2=554。

5MPa2)计算(1)试算小齿轮分度圆直径d1td1t≥==67。 85(2)计算圆周速度v===0。

68m/s(3)计算齿宽b及模数mntb=φdd1t=1*67。85mm=67。

85mmmnt===3。39h=2。

25mnt=2。 25*3。

39mm=7。63mmb/h=67。

85/7。63=8。

89(4)计算纵向重合度εβεβ==0。318*1*tan14=1。

59(5)计算载荷系数K已知载荷平稳,所以取KA=1根据v=0。 68m/s,7级精度,由图10—8查得动载系数KV=1。

11;由表10—4查的KHβ的计算公式和直齿轮的相同,故KHβ=1。12 0。

18(1 0。6*1)1*1 0。

23*1067。85=1。

42由表10—13查得KFβ=1。 36由表10—3查得KHα=KHα=1。

4。故载荷系数K=KAKVKHαKHβ=1*1。

03*1。4*1。

42=2。05(6)按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得d1==mm=73。

6mm(7)计算模数mnmn=mm=3。743.按齿根弯曲强度设计由式(10—17mn≥1)确定计算参数(1)计算载荷系数K=KAKVKFαKFβ=1*1。

03*1。4*1。

36=1。96(2)根据纵向重合度εβ=0。

318φdz1tanβ=1。59,从图10-28查得螺旋角影响系数Yβ=0。

88(3)计算当量齿数z1=z1/cosβ=20/cos14=21。 89z2=z2/cosβ=100/cos14=109。

47(4)查取齿型系数由表10-5查得YFa1=2。724;Yfa2=2。

172(5)查取应力校正系数由表10-5查得Ysa1=1。 569;Ysa2=1。

798(6)计算[σF]σF1=500MpaσF2=380MPaKFN1=0。95KFN2=0。

98[σF1]=339。29Mpa[σF2]=266MPa(7)计算大、小齿轮的并加以比较==0。

0126==0。01468大齿轮的数值大。

2)设计计算mn≥=2。4mn=2。

54.几何尺寸计算1)计算中心距z1=32。9,取z1=33z2=16a=255。

07mma圆整后取255mm2)按圆整后的中心距修正螺旋角β=arcos=1355'50”3)计算大、小齿轮的分度圆直径d1=85。00mmd2=425mm4)计算齿轮宽度b=φdd1b=85mmB1=90mm,B2=85mm5)结构设计以大齿轮为例。

因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。

8.二级齿轮减速器毕业设计

2 传动装置总体设计2.0设计任务书1设计任务设计带式输送机的传动系统,采用两级圆柱直齿齿轮减速器传动。

2 设计要求 (1)外形美观,结构合理,性能可靠,工艺性好; (2)多有图纸符合国家标准要求; (3)按毕业设计(论文)要求完成相关资料整理装订工作。3 原始数据 (1)运输带工作拉力 F=4KN (2)运输带工作速度V=2.0m/s(3)输送带滚筒直径 D=450mm(4)传动效率 4工作条件两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限10年,年工作300天。

2.1 确定传动方案 方案(a)为展开式两级圆柱齿轮减速器,其推荐传动比ī=8~40。展开式圆柱齿轮减速器的特点是其结构简单,但齿轮的位置不对称。

高速级齿轮布置在远离转矩输入端,可使轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯矩变形部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。方案(b)为同轴式两级圆柱齿轮减速器,其推荐传动比ī=8~40。

同轴式圆柱齿轮减速器的特点是减速器横向尺寸较小,两对齿轮浸入油中深度大致相同。但轴向尺寸和重量较大,且中间轴较长、刚度差,使载荷沿齿宽分布不均匀,高速级齿轮的承载能力难于充分利用。

综合比较展开式与同轴式圆柱齿轮减速器的优缺点,在本设计中,我将采用展开式圆柱齿轮减速器为设计模版。2.2 电动机的选择2.2.1 电动机的容量选择根据已知条件可以计算出工作机所需有效功率.0 设 —— 输送机滚筒轴至输送带间的传动效率; —— 联轴器效率, =0.99 —— 闭式圆柱齿轮传动效率, =0.97 —— 一对滚动轴承效率, =0.99 —— 带式输送机滚筒效率。

=0.96估算运动系统总传递效率:式中: 得传动系统总效率工作机所需电动机功率 由表2-1所列Y系列三相异步电动机技术数据中可以确定,满足 条件的电动机额定功率 应取为11 。表2-1电动机型号额定功率/ 满载转速/( )Y100L-4314202.22.2Y112M-4414402.22.2Y132S-45.514402.22.2Y132M-47.514402.22.2Y160M-41114602.22.2Y160L-41514602.22.2Y160L-6119702.02.02.2.2 电动机转速的选择根据已知条件由计算得知输送机滚筒的工作转速 由表2-1初选同步转速为1500 和1000 的电动机,对应用于额定功率 的电动机型号应分别为Y160M-4型和Y160L-6型。

把Y160M-4型和Y160L-6型电动机有关技术数据及相应算得的总传动比列于表2-2:表2-2 方案的比较方案号电动机型号额定功率( )同步转速( )满载转速( )总传动比ⅠY160M-411.01500146017.19ⅡY160L-611.0100097011.42通过对这两种方案比较可以看出:方案Ⅰ选用的电动机转速高、质量轻、价值低,总传动比为17.19,比较合适,故选用方案Ⅰ。2.2.3 电动机型号的确定 根据工作条件:两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限为10年,年工作300天,工作机所需电动机功率 及电动机的同步转速 等,选用Y系列三项异步电动机,卧式封闭结构,型号为Y160M-4,其主要性能数据如下:2.2.4 传动比的分配带式输送机传动系统的总传动比 由传动系统方案知所以圆柱齿轮总传动比 为便于两级圆柱齿轮减速器采用浸油润滑,当两对齿轮材料相同、齿面硬度 、齿宽系数相等时,考虑齿面接触强度接近相等的条件,取高速级传动比 低速级传动比传动系统各传动比分别为:。

9.求二级斜齿轮减速器设计毕业论文的相关资料

基于CATIA和ADAMS的二级斜齿轮减速器的虚拟样机建模和动力学仿真摘要:使用CATIA三维建模软件创建二级斜齿轮减速器的三维模型,通过SimDesigner转换该模型,实现与ADAMS机械动力学仿真软件的无缝连接,在ADAMS中建立虚拟样机模型并对其进行动力学仿真,得出各齿轮轴的转速以及齿轮间的啮合力并进行分析,获得比较可靠的结果。

关键词:虚拟样机;二级斜齿轮减速器;CATIA;SimDesigner;ADAMS 减速器是工作于原动机和工作机间用于降低速度、增大扭矩的一类传动装置,被广泛应用于各类机械中,在机械制造业中有着举足轻重的地位。为提高设计效率和确保减速器工作平稳,有必要对其进行虚拟样机建模以及动力学分析。

CATIA是美国IBM公司和法国达索公司(Dassault System)开发的一款优秀的三维设计软件,其强大的曲面设计功能使其成为车辆、船舶以及航空航天等领域的主流CAD软件,良好的参数化设计思路也使得设计工作更为轻松。ADAMS是美国MSC公司开发的动力学仿真分析软件,能对虚拟样机进行静力学、运动学、动力学仿真分析。

而SimDesigner则是MSC公司开发的CATIA与ADAMS间的数据接口,能实现两者之间的无缝联结。现结合CATIA和ADAMS两者的优点,使用CATIA进行减速器的三维建模,通过SimDesigner将其导入到ADAMS中进行虚拟仿真分析,得到比较可靠的数据,为减速器的优化设计提供依据。

1虚拟样机建模1.1斜齿轮的参数化建模要建立斜齿轮的模型关键在于确定齿轮的渐开线以及螺旋线,并尽量用参数和公式加以描述以实现参数化设计。先用(fx)中设置如下参数:`法面模数`,`法面齿顶高系数`,`变形系数`,类型为rea(l实数);`齿数z`,类型为integer(整数);`压力角`,`螺旋角`,类型为angle(角度);`齿高`,`螺距`,类型为length(长度),并根据齿轮的性质输入具体数值。

然后设置参数如下:`分度圆半径`,`基圆半径`,`齿顶圆半径`,`齿根圆半径`,类型为length(长度),并输入如下公式:`分度圆半径`=`模数`*`齿数z`/2/cosβ*1mm`基圆半径`=`分度圆半径`*co(s`压力角`)`齿顶圆半径`=`分度圆半径`+`模数`*`法面齿顶高系数`*cosβ*1mm+`模数`*`变形系数`*1mm`齿根圆半径`=`齿顶圆半径`-`齿高``螺距`=2*PI*`分度圆半径r`/tan(`螺旋角β`)要绘制渐开线,需要确定渐开线的直角坐标方程。如图1所示,渐开线方程为:x=r*sinθ-r*θ*cosθz=r*cosθ+r*θ*sinθ 根据这一方程,在GSD(Generative Shape Design)模块中,利用fog设置两个参数:x,t,,分别为length(长度),real(实数)类型。

并输入如下方程:x=`基圆半径`*sin(t*PI*1rad)-基圆半径`*t*PI*co(st*PI*1rad)同理,再设置z和t,类型分别为length(长度),rea(l实数)类型。输入如下方程:z=`基圆半径`*cos(t*PI*1rad)+`基圆半径`*t*PI*sin(t*PI*1rad)利用上面两个方程可以产生一系列渐开线上的点,再利用spline(样条线)命令即可得到一条渐开线。

然后利用Symmetry(镜像)、Split(分割)、Circle Pattern(圆周阵列)等操作完成整个齿轮的轮廓(如图2)。在绘制的过程中,相关的圆的半径、角度等都应使用上面的参数或用它们表示,以实现参数化设计. 完成齿轮的轮廓后使用Helix(空间螺旋线)命令产生螺旋线,所需的数据同样应采用上述参数表示。

最后,从Generative Shape Design模块切换到Part Design(零件设计)模块,用Rib(实体扫掠)功能,以刚生成的齿轮轮廓为轮廓,螺旋线为中心线,扫掠后得到一个斜齿轮的实体模型,再对其进行其他必要的操作便可得到想要的斜齿轮。1.2二级斜齿轮减速器的建模过程根据设计要求,按表1输入斜齿轮模型中相应参数的值,分别得到相应的斜齿轮模型。

使用STEP函数step(time,0,0d,0.2,9000d)定义其大小,类型选取Velocity;在输出轴上添加负载Torque,大小为1386000;啮合的齿轮间添加Solid to Solid Contact,大齿轮材料取40Cr钢,小齿轮材料取45钢,根据Herz碰撞理论,由公式K=43R12E(0其中,1R=1R1+1R2,1E0=1-V12E1+1-V22E2,V1、V2为两接触物体材料的泊松比,E1、E2两接触物体材料的弹性模量,K为接触强度系数,R1、R2分别为两齿轮的接触半径)计算得,低速级各参数分别为,Stiffness为1.15E+005,ForceExponent为7.36,Damping为50.0,Penetration Depth为0.1,高速级各参数为,Stiffness为1.15E+005,Force Exponent为8.84,Damping为50.0,Penetration Depth为0.1。2.2虚拟样机仿真设定仿真时间为t=0.5s,步长Step Size=0.0001s,仿真结果如图4至图8所示。

3结束语由理论计算得,输入轴、中间轴和输出轴的转速分别为:9000degree/second,2330degree/second,822degree/second。从上图可知:虚拟样机的输出结果与理论值符合得很好,但是由于齿轮传动的振动和冲击会产生轻微的周期性波动。

因此,总体而言,该虚拟样机满足传动比要求。从上图可知:两组啮合齿轮的啮合力都在一个值上下动,而且高速级啮合齿轮的啮合力比低速级小且波动更大,与实际的齿轮啮合相吻合。

由理论计算得:高速级和低速级的啮合力分别为5316N,11568N。与上图相比,可知仿真值。

齿轮计算毕业论文

转载请注明出处众文网 » 齿轮传动毕业论文

资讯

毕业设计网站论文

阅读(423)

本文主要为您介绍毕业设计网站论文,内容包括求几个毕业论文样本的网站,供参考.,高分求VB或网站程序论文和毕业设计,马上就毕业了,网站设计与制作的论文该怎么写。目前信息化技术的迅速普及和广泛应用,大量各行各业工作人员开始利用网络这种

资讯

关于信用社毕业论文

阅读(441)

本文主要为您介绍关于信用社毕业论文,内容包括我要写一份关于农村信用合作联社的论文,写什么题目的什么好呢?,信用社经济类毕业论文贷款方面的,能帮我写个关于某县农村信用社发展现状及分析的毕业论文的提纲搜。希望对你有所帮助。推荐一个

资讯

变频器在平网印花机设计与应用毕业论文设计

阅读(456)

本文主要为您介绍变频器在平网印花机设计与应用毕业论文设计,内容包括电气自动化论文题目,紧急需要“自行车上的物理知识”研究性学习论文,1500字以上,请大,急求一篇关于变频调速或者变频器的外文文献,要论文形式的搜狗。1. PLC控制花样喷

资讯

论善意取得毕业论文

阅读(412)

本文主要为您介绍论善意取得毕业论文,内容包括毕业论文善意取得制度创新之处,善意为话题写一篇议论文800字谢谢了,急!求助翻译论文摘要<论善意取得制度研究>。善意取得是《物权法》中的一项重要制度,关于善意取得制度的适用范围,主要有两种观

资讯

关于变频器的毕业论文

阅读(465)

本文主要为您介绍关于变频器的毕业论文,内容包括求毕业论文:变频器的设计,求PLC变频器毕业论文de外语参考文献,翻译求助——变频器等方面的专业论文的摘要。黄慧敏. 通用变频器应用中的问题及对策[J].矿山机械.2004(11)曹玉泉,王主恩. 异步

资讯

毕业设计科技小论文

阅读(407)

本文主要为您介绍毕业设计科技小论文,内容包括科技小论文可以写什么内容?,科技小论文400字,如何写科技小论文(3000字以内)?。比如;选好课题撰写科技小论文,首先要考虑写什么,也就是课题的选择。选择课题是写好论文的关键。要注意以下原则:价值

资讯

关于针棉织品染整专业毕业论文

阅读(467)

本文主要为您介绍关于针棉织品染整专业毕业论文,内容包括求一篇染整毕业论文,染整技术在毛发领域的应用论文,求一篇与染织专业有关的论文,1000到2000字左右~谢谢各位大神了~。进入21世纪,绿色环保纺织品成为纺织品种的新视点,在运用千变万化

资讯

毕业论文专家评阅意见

阅读(429)

本文主要为您介绍毕业论文专家评阅意见,内容包括论文评阅意见怎么写,大学毕业论文的评阅人评语怎么写,大学毕业论文的评阅人评语怎么写。研究生应按时认真完成学位论文并按照本学校研究生学位论文撰写要求中提出的有关事项和格式撰写论文。

资讯

子空间毕业论文

阅读(390)

本文主要为您介绍子空间毕业论文,内容包括子空间的交与和,子空间聚类文章簇集合并部分怎么写?,关于受限子空间图像识别的论文,中英文对照。最小二乘方法最早是有高斯提出的,他用这种方法解决了天文学方面的问题,特别是确定了某些行星和彗星的

资讯

广东金融学院毕业论文模板

阅读(425)

本文主要为您介绍广东金融学院毕业论文模板,内容包括金融学毕业论文,感觉好难啊,谁能发我几篇范文,金融学论文,怎么写,金融专业毕业论文范文。原发布者:zyling1208 对金融学的认识的论文金融市场交易之间不是单纯的买卖关系,更主要的是借贷关

资讯

会计信息失真的深层原因和对策研究毕业论文

阅读(401)

本文主要为您介绍会计信息失真的深层原因和对策研究毕业论文,内容包括有谁写过关于我国会计失真原因及对策的毕业论文,求助相关资料百,会计信息失真的原因及对策研究这个会计毕业论文好不好写,如果不,求《浅谈会计信息失真的成因与对策》的

资讯

本科毕业论文范文百度文库

阅读(368)

本文主要为您介绍本科毕业论文范文百度文库,内容包括毕业论文范文,本科毕业论文的标准格式及范文,求毕业论文、范文也可以。毕业论文格式论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提

资讯

汽车轮胎的保养与维护毕业论文

阅读(475)

本文主要为您介绍汽车轮胎的保养与维护毕业论文,内容包括汽车轮胎的日常维护毕业论文怎么写?,汽车轮胎的日常维护毕业论文怎么写?,汽车专业写一篇关于汽车轮胎的毕业论文。最初的气压轮胎是 1888年 英国的兽医 John Boyd Dunlop ,他先用橡胶

资讯

毕业论文一稿怎么写

阅读(396)

本文主要为您介绍毕业论文一稿怎么写,内容包括毕业论文一稿怎么写计算机专业记账本,毕业论文初稿怎么写,毕业论文如何写。按研究问题的大小不同可以把论文范文分、为宏观论文范文和微观论文范文。凡属国家全局性、带有普遍性并对局部工作有

资讯

一村一名大学生农业生产经营毕业论文

阅读(467)

本文主要为您介绍一村一名大学生农业生产经营毕业论文,内容包括求一篇发展新农村大学生1500字论文,急求一篇农村经济管理毕业论文,三千字左右谢谢!,经济管理毕业论文题目适度规模经营与农业现代化急!!。“建设社会主义新农村”是今年全党社