1.关于数列的毕业论文摘要
摘要
本文主要讨论线性素变数方程的可解性问题,这是经典解析数论研究的重要问
题之一本文考虑Gofbd'卜vinogrdaov定理在算术数列中的推广,我们的结果是:设
人,,七2,无3是任意正整数,11,12,13是整数,满足(l,,枯)=1,1兰J三3,再设N是充分
大的奇数,满足N三l,+12+13(mod(k,,kZ,k3)),(l'+lj一N,权,kj)=i,1三乞<;夕三3,
则存在一个实效常数。<;占<1,使得当K三N占时,方程
N=pi+脚+p3,岛三勺(饥Od勺),J=1,2,3
有素数解pl,脚,仍,其中K=mxa{2,无1,k2,无3}.
我们的结果包括了解析数论中的两个重要的经典结论:一是1.M.Vinogrdaov
的三素数定理:每个充分大的奇数可表示为三个奇素数的和;二是Yu.v.Linnki
关于算术数列中最小素数上界估计的结果:存在绝对常数。使得可k,O《kc,p=
+lkn,n=1,2,·…事实上,在我们的定理中取无1=k:=无3==1,即得前者;取
k卜kZ,k3>1,即得后者.
本文结果的证明使用了Hardy一Littelwodo圆法.为此,对余区间上积分的处理,
我们使用算术数列中素变数线性三角和的vinogrdaov形式的结果.对主区间上积分
的处理,我们使用了关于素数分布的显式结果,广义Guass和,以及DirihcetlL函
数密度估计等方面的深刻结果.
2.求“数列在生活中的应用”的论文
数列在生活中的应用在实际生活和经济活动中,很多问题都与数列密切相关。
如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。
这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, 。
an+1=an(1+p)-a,。
.(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。
因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。(三)数列在艺术中的广泛应用把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“菲波那契数列”,这些数被称为“菲波那契数”。
特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。不仅这个由1,1,2,3,5。
.开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。 一个很能说明问题的例子是五角星/正五边形。
五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。
这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。
虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。 接下来讲体系黄金律形式。
3.求“数列在生活中的应用”的论文
数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。
如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。
这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, 。
an+1=an(1+p)-a,。
.(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。
因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“菲波那契数列”,这些数被称为“菲波那契数”。
特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 不仅这个由1,1,2,3,5。
.开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。 一个很能说明问题的例子是五角星/正五边形。
五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。
这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。
虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。 接下来讲体系黄金律形式美法则的应用。
(黄金律。
4.高等数学论文1000字(数列及数列的应用)
不知道你需要哪一篇,你自己能上这个期刊网吗?
ki.net/kns50/Brief.aspx?ID=1&classtype=&systemno=&NaviDatabaseName=&NaviField=
序号 篇名 作者 刊名 年/期
1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08
2 等差数列应用3例 牛爱玲 数理天地(高中版) 2008/12
3 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一人教大纲) 2008/10
4 数列的应用 王思俭 考试(高考数学版) 2008/Z5
5 丰富多彩的图形数列应用题 赵艺川 高中数学教与学 2008/07
6 高考中常见数列应用问题模型例举 邓红旗 数理化学习 2008/04
7 利用列表法求解数列应用题 宗平芬 高中数学教与学 2008/02
8 新情境下的递推数列应用问题 胡志红 高考(数语英) 2007/11
9 再说斐波那契数列的应用 邹常志 中学生数学 2007/20
10 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一版) 2007/11
11 例说函数和数列应用题的数学化 廖东明 数学爱好者(高考版) 2007/04
12 构建数学模型解数列应用性问题 陈路飞 数学爱好者(高考版) 2006/02
13 数列应用题中的递推关系常见类型解析 黄爱民 中学数学月刊 2005/09
14 考点11 递推数列及数列的应用 中学数学 2005/Z1
15 等比数列应用题错解二例 李钟春 中学数学杂志 2005/07
16 建立递推关系 速解数列应用题例析 张照平 数理化学习(高中版) 2005/13
17 数列应用题中的几种常见递推关系 管春鸾 高中数学教与学 2005/07
18 数列应用题 李玉群 中学生数理化(高中版) 2005/04
19 数列应用问题例谈 李坤 第二课堂(高中版) 2005/05
20 新理念 新设计——谈等比数列的应用案例的设计和实践 林风 中学数学月刊 2005/01
5.谁有有关等差数列的论文 高中的 学生写的 1000字左右啊
等差数列及等比数列的“遗传”与“变异”
俗话说:“种瓜得瓜,种豆得豆”,这体现了生物遗传的根本特征.在生物学中,子代总是保持着亲代的某些基本特征,这种现象就是遗传.但子代又会与亲代有所差异,有的差异还很明显,这种差异就是变异.遗传和变异是生命的最基本特征之一.当然,在遗传过程中,由于基因内部也可能发生突变,这也会导致变异.数学虽不属于生命的范畴,但其中有些知识也存在着类似于生命遗传和变异的现象,这在等差数列及等比数列中表现尤为突出.我们知道等差(比)数列的本质属性是 与 的差(比)是同一个常数,这个本质属性有时会遗传到在由等差(比)数列构造而得的新数列中,而有时在构造的新数列中会失去这个本质属性,以致产生变异.这就是等差数列及等比数列的“遗传”与“变异”,本文对此归纳如下.为方便起见,这里规定本文中的数列 及 都是无穷数列.
1.遗传
若数列 是公差为 的等差数列,则由此构造出的以下数列是等差数列.如:
(1) 去掉前面几项后余下项组成的仍为公差为 的等差数列.
(2)所有的奇数项组成的是公差为 的等差数列;
所有的偶数项组成的是公差为 的等差数列;
形如 (其中 是常数,且 )的数列都是等差数列.
由此可得到的一般性结论是:凡是项的序号成等差数列(公差为 )的项依次组成的数列一定是等差数列,公差为 .
(3)数列 (其中 是任一个常数)是公差为 的等差数列.
(4) 数列 (其中 是任一个常数)是公差为 的等差数列.
(5)数列 (其中 是常数,且 )是公差为 的等差数列.
(6)若 是公差为 等差数列,且 为常数,则数列 一定是公差为 的等差数列.
(7)等差数列 中,任意连续 项的和是它前面连续 项的和与它后面连续 项的和的等差中项,也就是说这些连续 项的和也构成一个等差数列.
若 是公比为 的等比数列,则由此构造出的以下数列是等比数列.如:
(1) 去掉前面几项后余下项组成的仍是公比为 的等比数列.
(2)项的序号成等差数列(公差为 )的项依次取出并组成的数列一定是等比数列,公比为 .
(3)数列 是公比为 的等比数列.
(4)数列 ( 是任一常数且 )是等比数列,公比仍为 .
(5) ( 是常数,且 )是公比为 的等比数列.
特殊地:若数列 是正项等比数列时,且 是任一个实常数,则数列 是公比为 的等比数列.
(6) (其中 是常数,且 )是公比为 的等比数列.
(7)若 是公比为 的等比数列,,则 是公比为 的等比数列.
(8)等比数列 中,若任意连续 项的和不为 ,则任意连续 项的和是它前面连续 项的和与它后面连续 项的和的等比中项,也就是说这些连续 项的和也构成一个等比数列.
2.变异
若数列 , 均为不是常数列的等差数列时,则有:
(1) 当数列 中的项不同号时,则数列 一定不是等差数列.
(2) 数列 不是等差数列
(3) ( 是常数,且 , , )不是等差数列.
(4) 数列 不是等差数列.
若数列 为不是常数列的等比数列时,则有:
(1) 数列 (其中 是任一个不为0的常数,)不是等比数列.
(2) 数列 不一定是等比数列.如 时,则 ,所以 不是等比数列.
(3) 数列 不一定是等比数列.
3.突变
(1) 若数列 是公差为 的等差数列,则 (其中 是正常数)一定是公比为 的等比数列.
(2) 若 是公比为 的正项等比数列,则 (其中 是不等于1的正常数)是公差为 的等差数列.
课堂教学中向学生介绍上述等差数列与等比数列的“遗传”与“变异”,既加强了数学与生物两学科间的横向联系,有利于激发学生的学习积极性,也能使学生对“遗传”与“变异”有新的认识,同时又可以使学生加深对等差数列及等比数列知识的理解,从而更好地应用这些性质于解题之中.
6.帮忙找一篇论文 《论 数列在分期付款中的应用》
数列在生活中的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。
首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
。
an+1=an(1+p)-a,。。。。。。。。.(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
(二)有关数列的其他经济应用问题
数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。
7.数学毕业论文怎么写
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。
人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。
一、正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。
数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。
它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”
我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。
在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。
学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。
这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。
教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。
如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。
指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。
数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。
很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简。
8.一篇关于一个新发现的数列类公式的论文,应该在什么数学奖杂志上发
数列类公式的论文可以在以下发表投放,祝你马到功成!
1.数学通报
著名数学家华罗庚及著名数学教育家傅种孙出任总编辑,一批知名数学家担任了数学通报的编委。他们秉承先辈们的优良传统,致力于推进我国数学的普及和数学教育工作,亲自撰写了大量数学科普文章,大力推介国外数学及。
主管主办:中国科学技术协会 中国数学会;北京师范大学
快捷分类:教育中等教育 社会科学II
出版发行:北京 月刊 A4
期刊刊号:0583-1458, 11-2254/O1
创刊时间:1936 影响因子 0.185
审稿时间:1-3个月
期刊级别: 北大核心期刊
2.数学教育学报
《数学教育学报》宗旨:服务于中小学数学教育改革及高等数学教育专业课程设置与改革,确立现代数学教育观,倡导数学教育科学学术争鸣,推动我国数学教育由应试教育向素质教育转变,反映数学教育实践与改革的新成。
主管主办:天津市教育委员会 天津师范大学;中国教育学会
快捷分类:教育中等教育 社会科学II
出版发行:天津 双月刊 A4
期刊刊号:1004-9894, 12-1194/G4
创刊时间:1992年 影响因子 0.949
审稿时间:1-3个月
期刊级别: CSSCI南大核心期刊 北大核心期刊
3.数学通讯
《数学通讯》的声誉与质量吸引了众多的作者,他们纷纷向《数学通讯》投稿,致使《数学通讯》的稿源非常丰富,这一方面保证了《数学通讯》刊用文章的质量,另一方面也促使《数学通讯》的办刊思路向更广阔的方向发。
主管主办:中华人民共和国教育部 华中师范大学;湖北省数学学会;武汉数学学会
快捷分类:教育中等教育 社会科学II
出版发行:湖北 半月刊 A4
期刊刊号:0488-7395, 42-1152/O1
创刊时间:1933
审稿时间:1-3个月
期刊级别: 国家级期刊
4.数学教学通讯
《数学教学通讯.数学金刊》(学生初中版、学生高中版)旨在培养中学生的数学兴趣,拓展数学思维,提高数学成绩,夯实理科基础。《数学教学通讯》为教师教学提供更高效的教学参考,为帮助学生有针对性地解决数学问。
主管主办:重庆市科学技术协会西南师范大学 重庆市数学学会;西南师范大学数学与财经学院
快捷分类:教育教育综合 社会科学II
出版发行:重庆 旬刊 A4
期刊刊号:1001-8875, 50-1064/G4
创刊时间:1979年
审稿时间:1个月内
期刊级别: 省级期刊