1.时间序列预测法的运用例子
某一城市从1984年到1994年中,每年参加体育锻炼的人口数,排列起来,共有11个数据构成一个时间序列。我们希望用某个数学模型,根据这11个历史数据,来预测1995年或以后若干年中每年的体育锻炼人数是多少,以便于该城市领导人制订一个有关体育健身的发展战略或整个工作计划。不同的时间序列有不同的特征,例如一个人在一年中每天消耗的粮食基本上是相同的,把这365个数字排列起来。发现它所构成的时间序列总保持在一定水平,上下相差不太大,我们称它是平稳时间序列。它的取值和具体是哪个时期无关,只和时期的长短有关。一般来说.只有属于平稳过程的时间序列.才是可以被预测的。 表11980~1999年扬州市农业总产值 单位:万元
年份 农业总产值 年份 农业总产值 年份 农业总产值
1980 220.553 1987 345.560 1994 483.960
1981 236.285 1988 357.909 1995 549.807
1982 267.120 1989 357.788 1996 600.986
1983 278.787 1990 357.671 1997 620.281
1984 312.089 1991 305.855 1998 667.542
1985 331.172 1992 362.848 1999 711.741
1986 338.848 1993 414.892
表1是扬州市1980~1999年农业总产值的有关数据资料,资料摘自《扬州统计年鉴2000》,表中产值按1990年不变价格计算。根据表1时间序列的资料,画出时间序列折线图1。通过观察时间序列图,可以看出此时间序列具有明显的趋势变动。在1980~1999年20年间,扬州市农业总产值总体呈明显的上升趋势。农业总产值的变化分为两个时间段:1980~1990年时间序列呈曲线变化趋势,1991~1999年时间序列呈线性变化趋势。根据直观的判断,对时间序列采取分段处理的方法,即对1980~1990年的时间序列拟合二次曲线趋势模型,对1991~1999年的时间序列拟合线性趋势模型。
图1农业总产值折线图 (1)二次曲线趋势模型:Yt=a+bt+ct^
上述方程中的三个未知参数a、b、c根据最小二乘法求得。即对时间序列拟合一条趋势曲线,使之满足下列条件:各实际值Yt与趋势值〖AKY^〗t的离差平方和为最小,即∑(Yt-〖AKY^〗t)2=最小值,得到标准求解方程:
∑Y=na+b∑t+c∑t^2
∑tY=a∑t+b∑t^2+c∑t^3
∑t^2Y=a∑t^2+b∑t^3+c∑t^4
当取时间序列的中间时期数为原点时,有∑t=0,上式可简化为:
∑Y=na+c∑t^2
∑tY=b∑t^2
∑t^2Y=a∑t^2+c∑t^4
经过计算,得到对扬州市1980~1990年农业总产值时间序列拟合的二次曲线模型为:
Y^t=316488.1+14584.3t-705.3t^2。
(2)线性趋势模型:Y^t=a+bt
上述方程中的两个未知参数a、b也是根据最小二乘法的原理求得。
b=n∑tY-∑t∑Y/n∑t^2-(∑t)^2
a=1/n(∑Y-b∑t)
同样,为计算方便,取时间序列的中间时期数为原点,此时有∑t=0,上式可简化为:
a=1/n∑Y
b=∑tY/∑t^2
经过计算,得到对扬州市1991~1999年农业总产值时间序列拟合的线性模型为:
Y^t=524212+51090.5t
2.基于RBF神经网络的时间序列预测研究本科毕业论文,请求帮忙 爱问
我一本正经地胡说一下吧。
多因素时间序列预测是数据挖掘的一个重要研究内容,描述预测指标与影响因素之间存在的潜在关系,被广泛应用于许多领域。经典的预测方法在用于非线性系统预测时有一定的困难,而RBF神经网络具有较好的非线性特性,特别适用于高度非线性系统的处理,为多因素时间序列预测开辟了新的发展空间。
本文对基于RBF神经网络的预测模型进行了深入的研究,并详细研究了对网络输入空间的降维重构。论文主要内容如下: 采用RBF神经网络进行建模训练,并将结果与BP网络比较,仿真实验表明RBF网络的训练速度比BP网络显著加快,具有较好的泛化能力,能有效地应用于多因素时间序列预测。
将灰色关联分析(GRA)引入预处理过程,以消除与预测指标关联度相对小的影响因素,提出了基于GRA的RBF神经网络预测模型的约简,简化了网络结构,提高了预测精度。 针对多因素时间序列各因素之间存在相关性,导致信息重叠的缺点,提出了基于PCA的RBF神经网络预测模型的约简。
文中利用PCA方法对原有指标体系进行处理,提取主成分构成新的指标作为RBF神经网络的输入,优化了网络结构,提高了网络的泛化能力。 将上述两种约简方法相结合,提出了基于GRA-PCA的RBF神经网络预测模型的约简,减少了采集样本数目,提高了建模效率和预测精度。
3.时间序列在股市行情预测中的应用论文怎么写
作用没有想象中的大,你可以用股票的滞后变量来进行回归分析,滞后2~3期就够了,不过数据必须具体点,最好细分到每季度、每月的上证指数,还有时间上怎么也要十年左右吧!
我以前在论文附录中做过分析,数据都是自己按季度整理的,挺麻烦的呢,如果需要的话就发给你~
还有就是,我觉得写关于股票的预测方面的实际用处并不是很大,毕竟股票的影响因素太多,单单的凭借以前的走势而预期太不好了。。我自己也炒股票,就像那些macd、kdj之类的指标根本就起不到太大的作用,如果那个能预期的话,股市岂不就成了提款机了?现在你做的这个就像是那些指标一样,要知道,股市是活的,人是活的,而指标确实死的!说这么多的意思就是股市不是能简单预测的,你做的那个用处不大。。
如果你想做的话,建议换个题目,我当时的写的是对弗里德曼的货币需求理论在中国市场的分析。你可以写写货币供应量对通货膨胀的时滞性,分析下在我国市场的滞后期大概是多少~数据在国家统计局和中国人民银行都可以找到的,样本空间一定要足够大,在对滞后变量分析时候主要考虑各自的T检验是否通过,一般从通过之后大概就是那个的滞后期!这个比较直接反而有些许用处~
要是能分析出国家的一般性政策对实体市场的影响就更好了,更有用了~
呵呵,以上只是自己的建议~有什么其他的问题就给我留言吧~
4.时间序列分析法从哪些方面分析
1.趋势即人口、资金构成和技术等要素发展变化的基本情况。
这可从过去的销售曲线的变化 规律中推测出来,也可以看做是过去销售情况的自然趋势Q2.周期即经济周期波动的影响。由于经济发展具有周期性,因此,剔除周期性的影响对中期 预测相当重要。
3.季节指一年中销售变化的固有模式,如与日、周、月或季相关的规律性变动。这种变动是 与气候、假日、交易习惯,甚至与顾客上下班时间相联系的。
这一因素的影响以及针对这 一情况而采取的经营策略,在实际生活中我们经常会体会到。4.突发事件包括新法律法令的颁布、各种自然灾害以及社会动乱等。
这些因素都是可能遇到而无 法预料的,根据历史资料进行销售预测时,可以暂不考虑这一因素。但在实际经营中,对 一些变化的前奏应该加以关注。
转载请注明出处众文网 » 时间序列法案例毕业论文(时间序列预测法的运用例子)