电子密码锁的设计毕业论文(电子密码锁设计论文)
1.电子密码锁设计论文
红外线遥控12位电子密码锁的设计 摘要]采用密码锁专用集成电路设计的红外线遥控电子密码锁,具有密码预置、保密性强、误码报警、耗 电省等特点,适合住宅、办公室用锁要求,有实际开发价值。
[关键词]红外线遥控;电子密码锁;发射器;接收器 0引言 电子密码锁以其使用方便、功能齐全、安全可靠 等优点,受到人们的喜爱。尤其是采用遥控技术的电 子密码锁更受人们的欢迎。
电子密码锁种类繁多,各 具特色,所使用的电路各式各样。如有采用数字比较 器等数字集成电路设计的普通型电子密码锁,也有采 用单片机设计的智能化电子密码锁。
本文采用密码锁 专用集成电路设计电子密码锁。 1遥控电子密码锁的电路组成 遥控电子密码锁由红外发射器、红外接收器和密 码锁三部分组成,如图1所示。
遥控系统采用双音多 频(DTMF)信号专用发生器集成电路S2559及其配套 的专用接收的集成电路MC145436构成的红外遥控系 统。电子密码锁采用专用集成电路ZH9437。
2遥控电子密码锁的工作原理 将发射器对准接收器的接收头,按下发射器键盘 中的某一按键时,发射器的红外发射二极管就发射出与该按钮对应的DTMF信号。接收器按光电转换后,信 号先放大,然后送到与专用DTMF信号发生器S2559配 套的专用DTMF信号接收器MC145436进行解调,检出 用四位二进制码表示的指令信号,再送到译码器进行 译码,把指令信号的数码分配到相应的1 2个输出端。
事先,电子密码锁电路ZH9437中已输入并存储了12 位密码。如使用者按照它所储存的12位密码顺序依次 输入,它就输出开锁脉冲,进行开锁;如按错三次,则 发出长达6 0秒的报警信号。
2.1红外发射器 红外发射电路由IC 1 (S2559)及3X4矩阵按钮键盘 为主组成,如图2所示。核心元件S2559是DTMF信号 产生的专用集成电路[1]156-161。
S2559的技术参数如下: 工作电压为2.5~10V;静态工作电流为0.4~1.5μA; 输出驱动电流为1~10mA。 2.2红外接收器 红外接收电路由接收放大电路和解调电路组成, 如图3所示。
由于16脚直接输出的DTMF信号一般只有几百毫 伏,不能直接驱动红外线发光二极管发出DTMF信号, 因此,必须采用达林顿管输出方式进行功率放大,然 后才能驱动红外发光二极管发出D TMF信号。 为了保证运算放大器输出电压有较大的动态范围, 在静态时,应将输出端电位设置在1/2V DD 处。
所用两个 10K电阻(即R 4 R 5 )对电源进行1/2分压,并将1/2V DD 电压移引至LM358的同相输入端,相当于运算放大器 的输入偏置电压为1/2V DD ,从而使输出电压为1/2V DD 。 信号由C 2 进入IC 2 ,经过两级反相放大后,总增益 为A=A 1 A 2 =(1MΩ/10KΩ)2=104(A 1 =A 2 =-R6/R3)。
(2)解调电路。电路由专用集成电路IC 3 (MC145436) 为核心组成[1]164-168,它将双音频选频电路与指令解调 电路集于一体,主要由拨号音滤波器、前置放大器、高 低频组信号分离器、输入译码器、基准时钟振荡器等 组成。
经放大电路放大后的DTMF信号由IC 2 的7脚输入, (1)接收放大电路。以集成运算放大器LM358为 核心构成了接收前置放大电路。
当V D 2 接收到由发射 器发射的经DTMF调制的红外光信号时,就将红外线的 光信号转换为相应频率的电信号,这一信号耦合到IC 2 (LM358)上作两级运放。 首先经拨号音滤波器将DTMF信号以外的噪声滤除掉, 以提高电路抗干扰性能,然后经过前置放大器进行放 大。
检出有效信号后启动数据有效输出端12脚输出高 电平。同时D 0 ~D 3 (2、1、14、13脚)输出四位二进 制码。
D 0 ~D 3 输出的指令信号是由输出数据译码器对 电平幅度检测器输出的信号进行译码得到的。 IC 3 的9脚和10脚之间并联晶体的谐振频率为 3.579MHZ,与内部反相器构成晶体振荡器,产生本电 路所需的时钟信号。
IC 3 的5脚(GT)为保持时间输入 端,4脚(V DD )和8脚(V SS )分别为电源正极和负极。 IC 3 的2、1、14、13脚输出的四位二进制码,再经IC 4 (CD4514)译码为16个指令码输出。
CD4514是4位锁存/4-16线译码器、数据分配器, 有16位高电平锁存输出功能。它把IC 3 送来的8421码 译码后,将指令信号的数码分配到相应的输出端。
这 里只采用它的S 1 ~S 12 等12根输出线。由于采用继电 器,再加上驱动电路,选用两片MC1413,每片内部具 有7个独立的达林顿驱动管,作为输出级用。
经过红外发射电路和红外接收电路后,从遥控器 按钮产生信号到相应的继电器吸合,从而完成了指令 的空间传递。 2.3密码锁电路 密码锁电路是开锁的具体执行者,核心元件是 IC 7 (ZH9437)[2]。
密码锁电路如图4所示。IC 7 的5、6、7、8脚为横向信号输入端,10、11脚为纵向信号输入 端。
将输入信号与已存的密码进行自动对比判断,如 遇到错误输入信号,即由15脚向外接高响度喇叭输出 报警信号;如输入信号正确,则由17脚输出开锁信号。 其内部对比的标准是预先输入的密码。
密码锁电路拥 有1 0亿组密码总量,随机捕捉密码开锁的概率极低, 同时按错三次码就有长达60秒的报警,更增加了保险 性,再加上码位长达1 2位数,保密性能极佳。 密码的输入控制端为13端。
当KB闭合,即13脚 。
2.基于AT89C5`单片机电子密码锁的设计
这个开机显示STAR,你可以根据需要来改。
功能如下:初始密码1234,如果输入密码正确,显示open,错误显示wrong。密码可以修改,密码修改成功后返回初始转台。
程序经过硬件调试通过。 #include <reg52.h> #define uchar unsigned char #define uint unsigned int bit go1,go2,go3; //定义三个标志位 sbit SPK=P2^7; //蜂鸣器 sbit K1=P2^4; //读密码命令键 sbit K2=P2^5; //密码确认键 sbit K3=P2^6; //修改密码键 uchar hang,lie,temp,key,a,b,c,d, k,s,p,q,x,y,zh,i=1,j=2,m=4,n=4, co1=1,co2=2,co3=3,co4=4,flag=0; //定义初始密码为1234 uchar code tab[4][4]={{'0','1','2','3'}, //定义数字键值 {'4','5','6','7'}, {'8','9','A','B'}, {'C','D','E','F'}}; uchar code tab1[]={0xc0,0x92,0xf8,0x90,0x88,0xc8,0x8c,0x86,0xbf};//显示0、S、T、9、A、E、N、P、- void delay(uchar p) //延时函数 { for(x=0;x<p;x++) for(y=0;y<121;y++); } void key_scan() //键盘扫描 { P3=0xf0; //行全部置0,列置1 if(P3!=0xf0) //有按键按下,相应的位变为低电平 {delay(5); if(P3!=0xf0) //P3.4~P3.7作为行线 { temp=P3; switch(temp&0xf0) { case 0x70:hang=0;break; case 0xb0:hang=1;break; case 0xd0:hang=2;break; case 0xe0:hang=3;break; } } P3=0x0f; //列全部置0,行置1 if(P3!=0x0f) //P3.0~P3.3作为列线 { temp=P3; switch(temp&0x0f) { case 0x0e:lie=0;break; case 0x0d:lie=1;break; case 0x0b:lie=2;break; case 0x07:lie=3;break; } } key=tab[hang][lie]; for(q=0;q<3;q++) //延时,防止数字键误读 delay(200); } switch (key) { case '0':zh=0;flag++;break; //每按下一个数字键,flag自动加1 case '1':zh=1;flag++;break; case '2':zh=2;flag++;break; case '3':zh=3;flag++;break; case '4':zh=4;flag++;break; case '5':zh=5;flag++;break; case '6':zh=6;flag++;break; case '7':zh=7;flag++;break; case '8':zh=8;flag++;break; case '9':zh=9;flag++;break; case 'A':zh=10;flag++;break; case 'B':zh=11;flag++;break; case 'C':zh=12;flag++;break; case 'D':zh=13;flag++;break; case 'E':zh=14;flag++;break; case 'F':zh=15;flag++;break; } key='H'; //将不在0~F之间的字符H赋值给key,防止flag重复加1 } void display(void) //数码管显示函数 { P0=tab1[i];P2=0xf7;delay(5);P2=0xff; P0=tab1[j];P2=0xfb;delay(5);P2=0xff; P0=tab1[m];P2=0xfd;delay(5);P2=0xff; P0=tab1[n];P2=0xfe;delay(5);P2=0xff; } void main() { go1=0; //标志位清零 go2=0; go3=0; while(1) { display(); //上电时显示STAR if(K1==0) //按下K1键,数码管显示全零,同时go1置1 { delay(10); if(K1==0){i=0;j=0;m=0;n=0;go1=1;} } if(go1==1) { go2=1;key_scan(); //输入密码同时go2置1 if(flag==1){a=zh;i=8;} if(flag==2){b=zh;i=8;j=8;} if(flag==3){c=zh;i=8;j=8;m=8;} if(flag==4){d=zh;i=8;j=8;m=8;n=8;flag=0;} } if(K2==0&&go2==1) //判断密码是否正确 { delay(10); if(K2==0&&go2==1) { if(co1==a&&co2==b&&co3==c&&co4==d) { i=0;j=6;m=7;n=5; //密码正确显示OPEN,同时蜂鸣器长鸣1声,LED全亮 SPK=0;P1=0x00;delay(250);SPK=1;P1=0xff; } else //密码不正确则显示RONG,同时蜂鸣器急鸣5声,LED全亮 { i=4;j=0;m=5;n=3; for(s=0;s<5;s++) { SPK=0;P1=0x00;delay(50);SPK=1;P1=0xff; } } } } if(K3==0) //K3按下进入修改密码状态 { delay(10); if(K3==0)go3=1; //go3置1 } if(go3==1) { i=0;j=0;m=0;n=0; //数码管显示全零 while(1) { key_scan(); //输入新密码 if(flag==1){co1=zh;i=8;} if(flag==2){co2=zh;i=8,j=8;} if(flag==3){co3=zh;i=8,j=8;m=8;} if(flag==4){co4=zh;i=8,j=8;m=8;n=8;flag=0;} display(); //输入新密码时每输入一位新密码数码管对应位显示为- go1=0;go2=0;go3=0; //标志位重新清零 if(K2==0){i=1;j=2;m=4;n=4;break;} //按下确认键返回到STAR状态,等待重新读密码 } } } }。
3.要一份电子密码锁设计的论文 3000字左右 标准格式 有摘要关键词和参
电子密码锁 摘要 本文的电子密码锁利用数字逻辑电路,实现对门的电子控制,并且有各种附加电路保证电路能够安 工作,有极高的安全系数。
关键词 电子密码锁 电压比较器 555单稳态电路 计数器 JK触发器 UPS电源。1 引言 随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的亲呢。
设计本课题时构思了两种方案:一种是用以AT89C2051为核心的单片机控制方案;另一种是用以74LS112双JK触发器构成的数字逻辑电路控制方案。考虑到单片机方案原理复杂,而且调试较为繁琐,所以本文采用后一种方案。
2 总体方案设计2.1设计思路 共设了9个用户输入键,其中只有4个是有效的密码按键,其它的都是干扰按键,若按下干扰键,键盘输入电路自动清零,原先输入的密码无效,需要重新输入;如果用户输入密码的时间超过40秒(一般情况下,用户不会超过40秒,若用户觉得不便,还可以修改)电路将报警80秒,若电路连续报警三次,电路将锁定键盘5分钟,防止他人的非法操作。2.2总体方框图 3 设计原理分析 电路由两大部分组成:密码锁电路和备用电源(UPS),其中设置UPS电源是为了防止因为停电 造成的密码锁电路失效,使用户免遭麻烦。
密码锁电路包含:键盘输入、密码修改、密码检测、开锁电路、执行电路、报警电路、键盘输入次数锁定电路。3.1 键盘输入、密码修改、密码检测、开锁及执行电路 . 其电路如下图1所示: 图1 键盘输入、密码修改、密码检测、开锁、执行电路 开关K1~K9是用户的输入密码的键盘,用户可以通过开关输入密码,开关两端的电容是为了提高开关速度,电路先自动将IC1~IC4清零,由报警电路送来的清零信号经C25送到T11基极,使T11导通,其集电极输出低电平,送往IC1~IC4,实现清零。
密码修改电路由双刀双掷开关S1~S4组成(如图2所示), 它是利用开关切换的原理实现密码的修改。例如要设定密码为1458,可以拨动开关S1向左,S2向右,S3向左,S4向右,即可实现密码的修改,由于输入的密码要经过S1~S4的选择,也就实现了密码的校验。
本电路有16组的密码可供修改。 图2 密码修改电路 由两块74LS112(双JK触发器,包含IC1~IC4)组成密码检测电路。
由于IC1处于计数状态,当用户按下第一个正确的密码后,CLK端出现了一个负的下降沿,IC1计数,Q端输出为高电平,用户依次按下有效的密码,IC2~IC3也依次输出高电平,送入与门IC5,使其输出开锁的高电平信号送往IC13的2脚,执行电路动作,实现开锁。执行电路是由一块555单稳态电路(IC13),以及由T10、T11组成的达林顿管构成。
若IC13的2脚输入一高电平,则3脚输出高电平,使T10导通,T11导通,电磁阀开启,实现开门,同时T10集电极上接的D5(绿色发光二极管)发亮,表示开门,20秒后,555电路状态翻转,电磁阀停止工作,以节电。其中电磁阀并联的电容C24使为了提高电磁阀的力矩。
3.2 报警电路 报警电路实现的功能是:当输入密码的时间超过40秒(一般情况下用户输入不会超过),电路报警80秒,防止他人恶意开锁。电路包含两大部分,2分钟延时和40秒延时电路。
其工作原理是当用户开始输入密码时,电路开始2分钟计时,超出40秒,电路开始80秒的报警。如图3所示 图3 报警电路 有人走近门时,触摸了TP端(TP端固定在键盘上,其灵敏度非常高,保证电路可靠的触发),由于人体自身带的电,使IC10的2脚出现低电平,使IC10的状态发生翻转,其3脚输出高电平,T5导通(可以通过R12控制T1的基极电流),其集电极接的黄色发光二极管D3发光,表示现在电子锁处于待命状态,T6截止,C4开始通过R14充电(充电时间是40秒,此时为用户输入密码的时间,即用户输入密码的时间不能超过40秒,否则电路就开始报警, 由于用户经常输入密码,而且知道密码,一般输入密码的时间不会超过40秒),IC2开始进入延时40秒的状态。
开始报警:当用户输入的密码不正确或输入密码的时间超过40秒,IC11的2脚电位随着C4的充电而下降,当电位下降到1/3Vcc时(即40秒延时结束时候),3脚变成高电位(延时时是低电平),通过R15使(R15的作用是为了限制T7的导通电流防止电流过大烧毁三极管)T7导通,其集电极上面接的红色发光二极管D4发亮,表示当前处于报警状态,T8也随之而导通,使蜂鸣器发声,令贼人生怯,实现报警.停止报警:当达到了80秒的报警时间,IC10的6,7脚接的电容C5放电结束,IC10的3脚变成低电平,T5截止,T6导通,强制使强制电路处于稳态,IC11的3脚输出低电平,使T7,T8截止,蜂鸣器停止报警;或者用户输入的密码正确,则有开锁电路中的T10集电极输出清除报警信号,送至T12(PNP),T12导通,强制使T7基极至低电位,解除报警信号。3.3 报警次数检测及锁定电路 若用户操作连续失误超过3次,电路将锁定5分钟。
其工作原理如下:当电路报警的次数超过3次,由IC9(74161)构成的3位计数器将产生进位,通过IC7,输出清零信号送往74161的清零端,以。
4.急求: 4*4键盘及8位数码管显示构成的电子密码锁论文?
用4*4组成0-9数字键及确认键。
用8位数码管组成显示电路提示信息,当输入密码时,只显示“8.”,当密码位数输入完毕按下确认键时,对输入的密码与设定的密码进行比较,若密码正确,则门开,此处用led发光二极管亮一秒钟做为提示,同时发出“叮咚”声;若密码不正确,禁止按键输入3秒,同时发出“嘀、嘀”报警声;若在3秒之内仍有按键按下,则禁止按键输入3秒被重新禁止。2. 电路原理图图4.33.13. 系统板上硬件连线(1). 把“单片机系统”区域中的p0.0-p0.7用8芯排线连接到“动态数码显示”区域中的abcdefgh端子上。
(2). 把“单片机系统“区域中的p2.0-p2.7用8芯排线连接到“动态数码显示”区域中的s1s2s3s4s5s6s7s8端子上。(3). 把“单片机系统”区域中的p3.0-p3.7用8芯排线连接到“4*4行列式键盘”区域中的r1r2r3r4c1c2c3c4端子上。
(4). 把“单片机系统”区域中的p1.0用导线连接到“八路发光二极管模块”区域中的l2端子上。(5). 把“单片机系统”区域中的p1.7用导线连接到“音频放大模块”区域中的spk in端子上。
(6). 把“音频放大模块”区域中的spk out接到喇叭上。4. 程序设计内容(1). 4*4行列式键盘识别技术:有关这方面内容前面已经讨论过,这里不再重复。
(2). 8位数码显示,初始化时,显示“p ”,接着输入最大6位数的密码,当密码输入完后,按下确认键,进行密码比较,然后给出相应的信息。在输入密码过程中,显示器只显示“8.”。
当数字输入超过6个时,给出报警信息。在密码输入过程中,若输入错误,可以利用“del”键删除刚才输入的错误的数字。
(3). 4*4行列式键盘的按键功能分布图如图4.33.2所示:图4.33.25. c语言源程序#include unsigned char ps[]={1,2,3,4,5};unsigned char code dispbit[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00,0x40,0x73,0xff};unsigned char dispbuf[8]={18,16,16,16,16,16,16,16};unsigned char dispcount;unsigned char flashcount;unsigned char temp;unsigned char key;unsigned char keycount;unsigned char pslen=5;unsigned char getps[6];bit keyoverflag;bit errorflag;bit rightflag;unsigned int second3;unsigned int aa,bb;unsigned int cc;bit okflag;bit alarmflag;bit hibitflag;unsigned char oka,okb;void main(void){unsigned char i,j;tmod=0x01;th0=(65536-500)/256;tl0=(65536-500)%256;tr0=1;et0=1;ea=1;while(1){p3=0xff;p3_4=0;temp=p3;temp=temp & 0x0f;if (temp!=0x0f){for(i=10;i>0;i--)for(j=248;j>0;j--);temp=p3;temp=temp & 0x0f;if (temp!=0x0f){temp=p3;temp=temp & 0x0f;switch(temp){case 0x0e:key=7;break;case 0x0d:key=8;break;case 0x0b:key=9;break;case 0x07:key=10;break;}temp=p3;p1_1=~p1_1;if((key>=0) && (key<10)){if(keycount<6){getps[keycount]=key;dispbuf[keycount+2]=19;}keycount++;if(keycount==6){keycount=6;}else if(keycount>6){keycount=6;keyoverflag=1;//key overflow}}else if(key==12)//delete key{if(keycount>0){keycount--;getps[keycount]=0;dispbuf[keycount+2]=16;}else{keyoverflag=1;}}else if(key==15)//enter key{if(keycount!=pslen){errorflag=1;rightflag=0;second3=0;}else{for(i=0;i
5.电子密码锁文献综述
关键词:电子密码锁;FPGA;硬件描述语言;EDA目 录1 绪 论 11.1 国内外现状及其发展 11.2 电子密码锁的原理 21.3 电子密码锁的系统简介 41.4 系统设计要求 41.5 本课题的研究目的和意义 52 现场可编程门阵列FPGA 62.1 FPGA的基本结构 62.2 FPGA的优点 102.3 FPGA的设计流程 112.4 自顶向下设计法 172.5用模块化设计FPGA 183 VHDL硬件描述语言 203.1 VHDL语言的基本结构 203.2 结构体的描述方式 213.3 自上而下(TOP DOWN)的设计方法 224 电子密码锁的设计与仿真 244.1 硬件设备 244.2 几个主要功能模块的设计 254.3 计算机仿真 32结 束 语 38参考文献 39附录1英文原文 41附录2中文译文 50附录3源程序 571.1 国内外现状及其发展随着人们生活水平的提高和安全意识的加强,对安全的要求也就越来越高。
锁自古以来就是把守护门的铁将军,人们对它要求甚高,既要安全可靠的防盗,又要使用方便,这也是制锁者长期以来研制的主题。随着电子技术的发展,各类电子产品应运而生,电子密码锁就是其中之一。
据有关资料介绍,电子密码锁的研究从20世纪30年代就开始了,在一些特殊场所早就有所应用。这种锁是通过键盘输入一组密码完成开锁过程。
研究这种锁的初衷,就是为提高锁的安全性。由于电子锁的密钥量(密码量)极大,可以与机械锁配合使用,并且可以避免因钥匙被仿制而留下安全隐患。
电子锁只需记住一组密码,无需携带金属钥匙,免除了人们携带金属钥匙的烦恼,而被越来越多的人所欣赏。电子锁的种类繁多,例如数码锁,指纹锁,磁卡锁,IC卡锁,生物锁等。
但较实用的还是按键式电子密码锁。20世纪80年代后,随着电子锁专用集成电路的出现,电子锁的体积缩小,可靠性提高,成本较高,是适合使用在安全性要求较高的场合,且需要有电源提供能量,使用还局限在一定范围,难以普及,所以对它的研究一直没有明显进展。
目前,在西方发达国家,电子密码锁技术相对先进,种类齐全,电子密码锁已被广泛应用于智能门禁系统中,通过多种更加安全,更加可靠的技术实现大门的管理。在我国电子锁整体水平尚处于国际上70年代左右,电子密码锁的成本还很高,市场上仍以按键电子锁为主,按键式和卡片钥匙式电子锁已引进国际先进水平,现国内有几个厂生产供应市场。
但国内自行研制开发的电子锁,其市场结构尚未形成,应用还不广泛。国内的不少企业也引进了世界上先进的技术,发展前景非常可观。
希望通过不断的努力,使电子密码锁在我国也能得到广泛应用[1]。目前使用的电子密码锁大部分是基于单片机技术,以单片机为主要器件,其编码器与解码器的生成为软件方式[2]。
在实际应用中,由于程序容易跑飞,系统的可靠性能较差。基于现场可编程逻辑门阵列FPGA器件的电子密码锁,用FPGA器件构造系统,所有算法完全由硬件电路来实现,使得系统的工作可靠性大为提高。
由于FPGA具有现场可编程功能,当设计需要更改时,只需更改FPGA中的控制和接口电路,利用EDA工具将更新后的设计下载到FPGA中即可,无需更改外部电路的设计,大大提高了设计的效率。1.3 电子密码锁的系统简介通用的电子密码锁主要由三个部分组成:数字密码输入电路、密码锁控制电路和密码锁显示电路。
(1) 密码锁输入电路包括时序产生电路、键盘扫描电路、键盘弹跳消除电路、键盘译码电路等几个小的功能电路。(2)密码锁控制电路包括按键数据的缓冲存储电路,密码的清除、变更、存储、激活电锁电路(寄存器清除信号发生电路),密码核对(数值比较电路),解锁电路(开/关门锁电路)等几个小的功能电路。
(3)密码显示电路主要将显示数据的BCD码转换成相对应的编码。如,若选用七段数码管显示电路,主要将待显示数据的BCD码转换成数码器的七段显示驱动编码[4]。
1.4 系统设计要求设计一个具有较高安全性和较低成本的通用电子密码锁,具体功能要求如下:(1)数码输入:每按下一个数字键,就输入一个数值,并在显示器上的显示出该数值,同时将先前输入的数据依序左移一个数字位置。(2)数码清除:按下此键可清除前面所有的输入值,清除为“0000”。
(3)密码更改:按下此键时会将目前的数字设定成新的密码。(4)激活电锁:按下此键可将密码锁上锁。
(5)解除电锁:按下此键会检查输入的密码是否正确,密码正确即开锁。1.5 本课题的研究目的和意义随着人们生活水平的提高,对家庭防盗技术的要求也是越来越高,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的欢迎。
现在市场上主要是基于单片机技术的电子密码锁,但可靠性较差。FPGA即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物,是一种超大规模集成电路,具有对电路可重配置能力。
通常FPGA都有着上万次的重写次数,也就是说现在的硬件设计和软件设计一样灵活、方便。相对于基于单片机技术的电子密码锁,用FPGA器件来构成系统,可靠性提高,并且由于FPGA具有的现场可编程功能,使得电子密码锁的更改与升级更为方便简单[3]。
6.电子密码锁设计基于51单片机
[1]单片机多功能密码锁系统/防火防盗系统设计实现功能:1、密码锁功能/可以修改密码, 下次开机后新密码仍然有效2、支持一键恢复初始密码3、可添加防火防盗报警功能4、可进行功能定制☆已作出的实物优酷视频演示地址:单片机蓝牙密码锁系统实现功能:1、密码锁功能/可以修改密码, 下次开机后新密码仍然有效2、支持一键恢复初始密码3、手机蓝牙可以实现输入密码进行开锁4、可进行功能定制☆已作出的实物优酷视频演示地址:/v_show/id_XMjgxNjQ0MjA4MA==.htm。
电子密码锁的设计毕业论文(要一份电子密码锁设计的论文3000字左右标准格式有摘要关键词和参)
1.要一份电子密码锁设计的论文 3000字左右 标准格式 有摘要关键词和参
电子密码锁 摘要 本文的电子密码锁利用数字逻辑电路,实现对门的电子控制,并且有各种附加电路保证电路能够安 工作,有极高的安全系数。
关键词 电子密码锁 电压比较器 555单稳态电路 计数器 JK触发器 UPS电源。1 引言 随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的亲呢。
设计本课题时构思了两种方案:一种是用以AT89C2051为核心的单片机控制方案;另一种是用以74LS112双JK触发器构成的数字逻辑电路控制方案。考虑到单片机方案原理复杂,而且调试较为繁琐,所以本文采用后一种方案。
2 总体方案设计2.1设计思路 共设了9个用户输入键,其中只有4个是有效的密码按键,其它的都是干扰按键,若按下干扰键,键盘输入电路自动清零,原先输入的密码无效,需要重新输入;如果用户输入密码的时间超过40秒(一般情况下,用户不会超过40秒,若用户觉得不便,还可以修改)电路将报警80秒,若电路连续报警三次,电路将锁定键盘5分钟,防止他人的非法操作。2.2总体方框图 3 设计原理分析 电路由两大部分组成:密码锁电路和备用电源(UPS),其中设置UPS电源是为了防止因为停电 造成的密码锁电路失效,使用户免遭麻烦。
密码锁电路包含:键盘输入、密码修改、密码检测、开锁电路、执行电路、报警电路、键盘输入次数锁定电路。3.1 键盘输入、密码修改、密码检测、开锁及执行电路 . 其电路如下图1所示: 图1 键盘输入、密码修改、密码检测、开锁、执行电路 开关K1~K9是用户的输入密码的键盘,用户可以通过开关输入密码,开关两端的电容是为了提高开关速度,电路先自动将IC1~IC4清零,由报警电路送来的清零信号经C25送到T11基极,使T11导通,其集电极输出低电平,送往IC1~IC4,实现清零。
密码修改电路由双刀双掷开关S1~S4组成(如图2所示), 它是利用开关切换的原理实现密码的修改。例如要设定密码为1458,可以拨动开关S1向左,S2向右,S3向左,S4向右,即可实现密码的修改,由于输入的密码要经过S1~S4的选择,也就实现了密码的校验。
本电路有16组的密码可供修改。 图2 密码修改电路 由两块74LS112(双JK触发器,包含IC1~IC4)组成密码检测电路。
由于IC1处于计数状态,当用户按下第一个正确的密码后,CLK端出现了一个负的下降沿,IC1计数,Q端输出为高电平,用户依次按下有效的密码,IC2~IC3也依次输出高电平,送入与门IC5,使其输出开锁的高电平信号送往IC13的2脚,执行电路动作,实现开锁。执行电路是由一块555单稳态电路(IC13),以及由T10、T11组成的达林顿管构成。
若IC13的2脚输入一高电平,则3脚输出高电平,使T10导通,T11导通,电磁阀开启,实现开门,同时T10集电极上接的D5(绿色发光二极管)发亮,表示开门,20秒后,555电路状态翻转,电磁阀停止工作,以节电。其中电磁阀并联的电容C24使为了提高电磁阀的力矩。
3.2 报警电路 报警电路实现的功能是:当输入密码的时间超过40秒(一般情况下用户输入不会超过),电路报警80秒,防止他人恶意开锁。电路包含两大部分,2分钟延时和40秒延时电路。
其工作原理是当用户开始输入密码时,电路开始2分钟计时,超出40秒,电路开始80秒的报警。如图3所示 图3 报警电路 有人走近门时,触摸了TP端(TP端固定在键盘上,其灵敏度非常高,保证电路可靠的触发),由于人体自身带的电,使IC10的2脚出现低电平,使IC10的状态发生翻转,其3脚输出高电平,T5导通(可以通过R12控制T1的基极电流),其集电极接的黄色发光二极管D3发光,表示现在电子锁处于待命状态,T6截止,C4开始通过R14充电(充电时间是40秒,此时为用户输入密码的时间,即用户输入密码的时间不能超过40秒,否则电路就开始报警, 由于用户经常输入密码,而且知道密码,一般输入密码的时间不会超过40秒),IC2开始进入延时40秒的状态。
开始报警:当用户输入的密码不正确或输入密码的时间超过40秒,IC11的2脚电位随着C4的充电而下降,当电位下降到1/3Vcc时(即40秒延时结束时候),3脚变成高电位(延时时是低电平),通过R15使(R15的作用是为了限制T7的导通电流防止电流过大烧毁三极管)T7导通,其集电极上面接的红色发光二极管D4发亮,表示当前处于报警状态,T8也随之而导通,使蜂鸣器发声,令贼人生怯,实现报警.停止报警:当达到了80秒的报警时间,IC10的6,7脚接的电容C5放电结束,IC10的3脚变成低电平,T5截止,T6导通,强制使强制电路处于稳态,IC11的3脚输出低电平,使T7,T8截止,蜂鸣器停止报警;或者用户输入的密码正确,则有开锁电路中的T10集电极输出清除报警信号,送至T12(PNP),T12导通,强制使T7基极至低电位,解除报警信号。3.3 报警次数检测及锁定电路 若用户操作连续失误超过3次,电路将锁定5分钟。
其工作原理如下:当电路报警的次数超过3次,由IC9(74161)构成的3位计数器将产生进位,通过IC7,输出清零信号送往74161的清零端,以。
2.电子密码锁设计论文
红外线遥控12位电子密码锁的设计 摘要]采用密码锁专用集成电路设计的红外线遥控电子密码锁,具有密码预置、保密性强、误码报警、耗 电省等特点,适合住宅、办公室用锁要求,有实际开发价值。
[关键词]红外线遥控;电子密码锁;发射器;接收器 0引言 电子密码锁以其使用方便、功能齐全、安全可靠 等优点,受到人们的喜爱。尤其是采用遥控技术的电 子密码锁更受人们的欢迎。
电子密码锁种类繁多,各 具特色,所使用的电路各式各样。如有采用数字比较 器等数字集成电路设计的普通型电子密码锁,也有采 用单片机设计的智能化电子密码锁。
本文采用密码锁 专用集成电路设计电子密码锁。 1遥控电子密码锁的电路组成 遥控电子密码锁由红外发射器、红外接收器和密 码锁三部分组成,如图1所示。
遥控系统采用双音多 频(DTMF)信号专用发生器集成电路S2559及其配套 的专用接收的集成电路MC145436构成的红外遥控系 统。电子密码锁采用专用集成电路ZH9437。
2遥控电子密码锁的工作原理 将发射器对准接收器的接收头,按下发射器键盘 中的某一按键时,发射器的红外发射二极管就发射出与该按钮对应的DTMF信号。接收器按光电转换后,信 号先放大,然后送到与专用DTMF信号发生器S2559配 套的专用DTMF信号接收器MC145436进行解调,检出 用四位二进制码表示的指令信号,再送到译码器进行 译码,把指令信号的数码分配到相应的1 2个输出端。
事先,电子密码锁电路ZH9437中已输入并存储了12 位密码。如使用者按照它所储存的12位密码顺序依次 输入,它就输出开锁脉冲,进行开锁;如按错三次,则 发出长达6 0秒的报警信号。
2.1红外发射器 红外发射电路由IC 1 (S2559)及3X4矩阵按钮键盘 为主组成,如图2所示。核心元件S2559是DTMF信号 产生的专用集成电路[1]156-161。
S2559的技术参数如下: 工作电压为2.5~10V;静态工作电流为0.4~1.5μA; 输出驱动电流为1~10mA。 2.2红外接收器 红外接收电路由接收放大电路和解调电路组成, 如图3所示。
由于16脚直接输出的DTMF信号一般只有几百毫 伏,不能直接驱动红外线发光二极管发出DTMF信号, 因此,必须采用达林顿管输出方式进行功率放大,然 后才能驱动红外发光二极管发出D TMF信号。 为了保证运算放大器输出电压有较大的动态范围, 在静态时,应将输出端电位设置在1/2V DD 处。
所用两个 10K电阻(即R 4 R 5 )对电源进行1/2分压,并将1/2V DD 电压移引至LM358的同相输入端,相当于运算放大器 的输入偏置电压为1/2V DD ,从而使输出电压为1/2V DD 。 信号由C 2 进入IC 2 ,经过两级反相放大后,总增益 为A=A 1 A 2 =(1MΩ/10KΩ)2=104(A 1 =A 2 =-R6/R3)。
(2)解调电路。电路由专用集成电路IC 3 (MC145436) 为核心组成[1]164-168,它将双音频选频电路与指令解调 电路集于一体,主要由拨号音滤波器、前置放大器、高 低频组信号分离器、输入译码器、基准时钟振荡器等 组成。
经放大电路放大后的DTMF信号由IC 2 的7脚输入, (1)接收放大电路。以集成运算放大器LM358为 核心构成了接收前置放大电路。
当V D 2 接收到由发射 器发射的经DTMF调制的红外光信号时,就将红外线的 光信号转换为相应频率的电信号,这一信号耦合到IC 2 (LM358)上作两级运放。 首先经拨号音滤波器将DTMF信号以外的噪声滤除掉, 以提高电路抗干扰性能,然后经过前置放大器进行放 大。
检出有效信号后启动数据有效输出端12脚输出高 电平。同时D 0 ~D 3 (2、1、14、13脚)输出四位二进 制码。
D 0 ~D 3 输出的指令信号是由输出数据译码器对 电平幅度检测器输出的信号进行译码得到的。 IC 3 的9脚和10脚之间并联晶体的谐振频率为 3.579MHZ,与内部反相器构成晶体振荡器,产生本电 路所需的时钟信号。
IC 3 的5脚(GT)为保持时间输入 端,4脚(V DD )和8脚(V SS )分别为电源正极和负极。 IC 3 的2、1、14、13脚输出的四位二进制码,再经IC 4 (CD4514)译码为16个指令码输出。
CD4514是4位锁存/4-16线译码器、数据分配器, 有16位高电平锁存输出功能。它把IC 3 送来的8421码 译码后,将指令信号的数码分配到相应的输出端。
这 里只采用它的S 1 ~S 12 等12根输出线。由于采用继电 器,再加上驱动电路,选用两片MC1413,每片内部具 有7个独立的达林顿驱动管,作为输出级用。
经过红外发射电路和红外接收电路后,从遥控器 按钮产生信号到相应的继电器吸合,从而完成了指令 的空间传递。 2.3密码锁电路 密码锁电路是开锁的具体执行者,核心元件是 IC 7 (ZH9437)[2]。
密码锁电路如图4所示。IC 7 的5、6、7、8脚为横向信号输入端,10、11脚为纵向信号输入 端。
将输入信号与已存的密码进行自动对比判断,如 遇到错误输入信号,即由15脚向外接高响度喇叭输出 报警信号;如输入信号正确,则由17脚输出开锁信号。 其内部对比的标准是预先输入的密码。
密码锁电路拥 有1 0亿组密码总量,随机捕捉密码开锁的概率极低, 同时按错三次码就有长达60秒的报警,更增加了保险 性,再加上码位长达1 2位数,保密性能极佳。 密码的输入控制端为13端。
当KB闭合,即13脚 。
3.求电子密码锁毕业设计一份,至少八千字
目 录
1.概 述 1
1.1 电子密码锁简介 1
1.2 电子密码锁的发展趋势 1
1.3 本设计所要实现的目标 2
2.设计方案的选择 3
2.1 方案一:采用数字电路控制 3
2.2 方案二:采用以单片机为核心的控制方案 3
3.主要元器件介绍 4
3.1 主控芯片AT89S51 4
3.1.1 AT89S51性能简介 4
3.1.2 AT89S51引角功能说明 5
3.1.3 AT89S51芯片内部结构 6
3.2 存储芯片AT24C02 8
3.3 LCD1602显示器 9
3.3.1 接口信号说明 9
3.3.2 主要技术参数 10
3.3.3 基本操作程序 10
3.4 晶体振荡器 10
4.系统硬件构成 12
4.1 设计原理 12
4.2 电路总体构成 12
4.3 电源输入部分 13
4.4 键盘输入部分 14
4.5 密码存储部分 14
4.6 复位部分 15
4.7 晶振部分 16
4.8 显示部分 16
4.9 报警部分 17
4.10 开锁部分 17
5.系统软件设计 19
5.1 主程序流程图 19
5.2 键功能流程图 20
5.3 密码设置流程图 21
5.4 开锁流程图 22
6.结束语 23
参考文献 24
致 谢 25
附 录 26
附录一 程序清单 27
附录二 设计图纸 47
附录2.1 原理图 47
附录2.2 PCB图 48
附录三 材料清单 49
4.急需:电子密码锁及自动报警系统的毕业设计
基于单片机控制的电子密码锁 摘要:本系统由单片机系统、矩阵键盘、LED显示和报警系统组成。
系统能完成开锁、超时报警、超次锁定、管理员解密、修改用户密码基本的密码锁的功能。除上述基本的密码锁功能外,还具有调电存储、声光提示等功能,依据实际的情况还可以添加遥控功能。
本系统成本低廉,功能实用 关键词:AT89S51,AT24C02, 电子密码锁,矩阵键盘 一、引言 随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的亲呢。设计本课题时构思了两种方案:一种是用以AT89s51为核心的单片机控制方案;另一种是用以74LS112双JK触发器构成的数字逻辑电路控制方案。
考虑到数字电路方案原理过于简单,而且不能满足现在的安全需求,所以本文采用前一种方案。二、方案论证与比较 方案一:采用数字电路控制。
其原理方框图如图1-1所示。图2-1 数字密码锁电路方案 采用数字密码锁电路的好处就是设计简单。
用以74LS112双JK触发器构成的数字逻辑电路作为密码锁的核心控制,共设了9个用户输入键,其中只有4个是有效的密码按键,其它的都是干扰按键,若按下干扰键,键盘输入电路自动清零,原先输入的密码无效,需要重新输入;如果用户输入密码的时间超过40秒(一般情况下,用户不会超过40秒,若用户觉得不便,还可以修改)电路将报警80秒,若电路连续报警三次,电路将锁定键盘5分钟,防止他人的非法操作。电路由两大部分组成:密码锁电路和备用电源(UPS),其中设置UPS电源是为了防止因为停电造成的密码锁电路失效,使用户免遭麻烦。
密码锁电路包含:键盘输入、密码修改、密码检测、开锁电路、执行电路、报警电路、键盘输入次数锁定电路。方案二:采用一种是用以AT89S51为核心的单片机控制方案。
利用单片机灵活的编程设计和丰富的IO端口,及其控制的准确性,不但能实现基本的密码锁功能,还能添加调电存储、声光提示甚至添加遥控控制功能。其原理如图1-2所示。
图2-2单片机控制方案 通过比较以上两种方案,单片机方案有较大的活动空间,不但能实现所要求的功能而且能在很大的程度上扩展功能,而且还可以方便的对系统进行升级,所以我们采用后一种方案。三、电路的功能单元设计1.开锁机构 通过单片机送给开锁执行机构,电路驱动电磁锁吸合,从而达到开锁的目的。
其原理如图2-1所示。图3-1密码锁开锁机构示意图 当用户输入的密码正确而且是在规定的时间(普通用户要求在12s内输入正确的密码,管理员要求在5s输入正确的密码)输入的话,单片机便输出开门信号,送到开锁驱动电路,然后驱动电磁锁,达到开门的目的。
其实际电路如图2-2所示。电路驱动和开锁两级组成。
由D5、R1、T10组成驱动电路,其中T10可以选择普通的小功率三极管如9014、9018都可以满足要求。D5作为开锁的提示;由D6、C24、T11组成。
其中D6、C24是为了消除电磁锁可能产生的反向高电压以及可能产生的电磁干扰。T11可选用中功率的三极管如8050,电磁锁的选用要视情况而定,但是吸合力要足够且由一定的余量。
在本次设计中,基于节省材料的原则,暂时用发光二极管代替电磁锁,发光管亮,表示开锁;灭,表示没有开锁。图3-2密码锁开锁机构电路图2.按键电路设计 由于设计要求使用矩阵键盘,所以本设计就采用行列式键盘,同时也能减少键盘与单片机接口时所占用的I/O线的数目,在按键比较多的时候,通常采用这样方法。
其原理如图2-3所示。图3-3 行列式键盘原理电路图 每一条水平(行线)与垂直线(列线)的交叉处不相通,而是通过一个按键来连通,利用这种行列式矩阵结构只需要N条行线和M条列线,即可组成具有N*M个按键的键盘。
在这种行列式矩阵键盘非键盘编码的单片机系统中,键盘处理程序首先执行等待按键并确认有无按键按下的程序段。当确认有按键按下后,下一步就要识别哪一个按键按下。
对键的识别通常有两种方法:一种是常用的逐行扫描查询法;另一种是速度较快的线反转法。对照图2-3所示的44键盘,说明线反转个工作原理。
首先辨别键盘中有无键按下,有单片机I/O口向键盘送全扫描字,然后读入行线状态来判断。方法是:向行线输出全扫描字00H,把全部列线置为低电平,然后将列线的电平状态读入累加器A中。
如果有按键按下,总会有一根行线电平被拉至低电平从而使行线不全为1。判断键盘中哪一个键被按下使通过将列线逐列置低电平后,检查行输入状态来实现的。
方法是:依次给列线送低电平,然后查所有行线状态,如果全为1,则所按下的键不在此列;如果不全为1,则所按下的键必在此列,而且是在与零电平行线相交的交点上的那个键。按键的操作面板如图图2-3所示。
共计数字键10个,功能键6个。键盘上还有3个指示灯和一个蜂鸣器。
图3-4 按键操作面板示意图10个数字键用来输入密码,另外6个功能键分别是:CLR、EN、F1、F2、F3、F4。其中CLR键的功能是当输入密码错误的时候,清除前面已经输入的数据,重新。
5.锁急求题目为:“单片机课程设计
基于单片机控制的电子密码锁
摘要:本系统由单片机系统、矩阵键盘、LED显示和报警系统组成。系统能完成开锁、超时报警、超次锁定、管理员解密、修改用户密码基本的密码锁的功能。除上述基本的密码锁功能外,还具有调电存储、声光提示等功能,依据实际的情况还可以添加遥控功能。本系统成本低廉,功能实用
关键词:AT89S51,AT24C02, 电子密码锁,矩阵键盘
一、引言
随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的亲呢。
设计本课题时构思了两种方案:一种是用以AT89s51为核心的单片机控制方案;另一种是用以74LS112双JK触发器构成的数字逻辑电路控制方案。考虑到数字电路方案原理过于简单,而且不能满足现在的安全需求,所以本文采用前一种方案。
二、方案论证与比较
方案一:采用数字电路控制。其原理方框图如图1-1所示。
图2-1 数字密码锁电路方案
采用数字密码锁电路的好处就是设计简单。用以74LS112双JK触发器构成的数字逻辑电路作为密码锁的核心控制,共设了9个用户输入键,其中只有4个是有效的密码按键,其它的都是干扰按键,若按下干扰键,键盘输入电路自动清零,原先输入的密码无效,需要重新输入;如果用户输入密码的时间超过40秒(一般情况下,用户不会超过40秒,若用户觉得不便,还可以修改)电路将报警80秒,若电路连续报警三次,电路将锁定键盘5分钟,防止他人的非法操作。
电路由两大部分组成:密码锁电路和备用电源(UPS),其中设置UPS电源是为了防止因为停电造成的密码锁电路失效,使用户免遭麻烦。
密码锁电路包含:键盘输入、密码修改、密码检测、开锁电路、执行电路、报警电路、键盘输入次数锁定电路。
方案二:采用一种是用以AT89S51为核心的单片机控制方案。利用单片机灵活的编程设计和丰富的IO端口,及其控制的准确性,不但能实现基本的密码锁功能,还能添加调电存储、声光提示甚至
有需要的话百度直接hi我吧、
6.急求题目为:“数字密码锁设计”的论文
电子密码锁
摘要 本文的电子密码锁利用数字逻辑电路,实现对门的电子控制,并且有各种附加电路保证电路能够安
工作,有极高的安全系数。
关键词 电子密码锁 电压比较器 555单稳态电路 计数器 JK触发器 UPS电源。
1 引言
随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事件屡见不鲜,电子锁由于其保密性高,使用灵活性好,安全系数高,受到了广大用户的亲呢。
设计本课题时构思了两种方案:一种是用以AT89C2051为核心的单片机控制方案;另一种是用以74LS112双JK触发器构成的数字逻辑电路控制方案。考虑到单片机方案原理复杂,而且调试较为繁琐,所以本文采用后一种方案。
2 总体方案设计
2.1设计思路
共设了9个用户输入键,其中只有4个是有效的密码按键,其它的都是干扰按键,若按下干扰键,键盘输入电路自动清零,原先输入的密码无效,需要重新输入;如果用户输入密码的时间超过40秒(一般情况下,用户不会超过40秒,若用户觉得不便,还可以修改)电路将报警80秒,若电路连续报警三次,电路将锁定键盘5分钟,防止他人的非法操作。
2.2总体方框图
有需要直接百度hi我。或者按用户名找我
7.关于FPGA的电子密码锁的设计 求一份开题报告
摘 要 随着电子技术的发展,具有防盗报警等功能的电子密码锁代替密码量少、安全性差的机械式密码锁已是必然趋势。
电子密码锁与普通机械锁相比,具有许多独特的优点:保密性好,防盗性强,可以不用钥匙,记住密码即可开锁等。目前使用的电子密码锁大部分是基于单片机技术,以单片机为主要器件,其编码器与解码器的生成为软件方式。
在实际应用中,由于程序容易跑飞,系统的可靠性能较差。本文主要阐述了一种基于现场可编程门阵列FPGA器件的电子密码锁的设计方法。
用FPGA器件构造系统,所有算法完全由硬件电路来实现,使得系统的工作可靠性大为提高。由于FPGA具有现场可编程功能,当设计需要更改时,只需更改FPGA中的控制和接口电路,利用EDA工具将更新后的设计下载到FPGA中即可,无需更改外部电路的设计,大大提高了设计的效率。
因此,采用FPGA开发的数字系统,不仅具有很高的工作可靠性,而且升级也极其方便。本文采用EDA技术,利用Quartus II工作平台和硬件描述语言,设计了一种电子密码锁,并通过一片FPGA芯片实现。
关键词:电子密码锁;FPGA;硬件描述语言;EDA 目 录1 绪 论 11.1 国内外现状及其发展 11.2 电子密码锁的原理 21.3 电子密码锁的系统简介 41.4 系统设计要求 41.5 本课题的研究目的和意义 52 现场可编程门阵列FPGA 62.1 FPGA的基本结构 62.2 FPGA的优点 102.3 FPGA的设计流程 112.4 自顶向下设计法 172.5用模块化设计FPGA 183 VHDL硬件描述语言 203.1 VHDL语言的基本结构 203.2 结构体的描述方式 213.3 自上而下(TOP DOWN)的设计方法 224 电子密码锁的设计与仿真 244.1 硬件设备 244.2 几个主要功能模块的设计 254.3 计算机仿真 32 结 束 语 38 参考文献 39 附录1英文原文 41 附录2中文译文 50 附录3源程序 571.1 国内外现状及其发展 随着人们生活水平的提高和安全意识的加强,对安全的要求也就越来越高。锁自古以来就是把守护门的铁将军,人们对它要求甚高,既要安全可靠的防盗,又要使用方便,这也是制锁者长期以来研制的主题。
随着电子技术的发展,各类电子产品应运而生,电子密码锁就是其中之一。据有关资料介绍,电子密码锁的研究从20世纪30年代就开始了,在一些特殊场所早就有所应用。
这种锁是通过键盘输入一组密码完成开锁过程。研究这种锁的初衷,就是为提高锁的安全性。
由于电子锁的密钥量(密码量)极大,可以与机械锁配合使用,并且可以避免因钥匙被仿制而留下安全隐患。电子锁只需记住一组密码,无需携带金属钥匙,免除了人们携带金属钥匙的烦恼,而被越来越多的人所欣赏。
电子锁的种类繁多,例如数码锁,指纹锁,磁卡锁,IC卡锁,生物锁等。但较实用的还是按键式电子密码锁。
20世纪80年代后,随着电子锁专用集成电路的出现,电子锁的体积缩小,可靠性提高,成本较高,是适合使用在安全性要求较高的场合,且需要有电源提供能量,使用还局限在一定范围,难以普及,所以对它的研究一直没有明显进展。目前,在西方发达国家,电子密码锁技术相对先进,种类齐全,电子密码锁已被广泛应用于智能门禁系统中,通过多种更加安全,更加可靠的技术实现大门的管理。
在我国电子锁整体水平尚处于国际上70年代左右,电子密码锁的成本还很高,市场上仍以按键电子锁为主,按键式和卡片钥匙式电子锁已引进国际先进水平,现国内有几个厂生产供应市场。但国内自行研制开发的电子锁,其市场结构尚未形成,应用还不广泛。
国内的不少企业也引进了世界上先进的技术,发展前景非常可观。希望通过不断的努力,使电子密码锁在我国也能得到广泛应用[1]。
目前使用的电子密码锁大部分是基于单片机技术,以单片机为主要器件,其编码器与解码器的生成为软件方式[2]。在实际应用中,由于程序容易跑飞,系统的可靠性能较差。
基于现场可编程逻辑门阵列FPGA器件的电子密码锁,用FPGA器件构造系统,所有算法完全由硬件电路来实现,使得系统的工作可靠性大为提高。由于FPGA具有现场可编程功能,当设计需要更改时,只需更改FPGA中的控制和接口电路,利用EDA工具将更新后的设计下载到FPGA中即可,无需更改外部电路的设计,大大提高了设计的效率。
1.3 电子密码锁的系统简介 通用的电子密码锁主要由三个部分组成:数字密码输入电路、密码锁控制电路和密码锁显示电路。(1) 密码锁输入电路包括时序产生电路、键盘扫描电路、键盘弹跳消除电路、键盘译码电路等几个小的功能电路。
(2)密码锁控制电路包括按键数据的缓冲存储电路,密码的清除、变更、存储、激活电锁电路(寄存器清除信号发生电路),密码核对(数值比较电路),解锁电路(开/关门锁电路)等几个小的功能电路。(3)密码显示电路主要将显示数据的BCD码转换成相对应的编码。
如,若选用七段数码管显示电路,主要将待显示数据的BCD码转换成数码器的七段显示驱动编码[4]。1.4 系统设计要求 设计一个具有较高安全性和较低成本的通用电子密码锁,具体功能要求如下:(1)数码输入:每按下一个数字键,就输入一个数值,并在显示器上的显示出该数值,同时将先前。
8.求电子密码锁毕业设计里面要LCD1602显示的 程序要对啊编译的要正
#define uint unsigned int#define uchar unsigned char/**********************************************/sbit e = P2^7;sbit rs = P2^6;sbit rw = P2^5;#define DATAPORT P0/**********************************************///两个延时//delay(uint x)void delay(uint x){ uint i, j; for(i = x; i > 0; i--) { for (j = 110; j > 0; j--); }}//delay1(uint x)void delay1(uint x){ uint i, j; for(i = x; i > 0; i--) { for (j = 19; j > 0; j--); }}/**********************************************///写命令void Write_Cmd(uchar com){ e=0; rs=0; rw=0; DATAPORT=com; delay1(10); e=1; delay1(25); e=0;}/**********************************************///写数据void Write_Data(uchar dat){ e=0; rs=1; rw=0; DATAPORT=dat; delay1(10); e=1; delay1(25); e=0; }/**********************************************///lcd1602初始化void lcd_init(){ delay(15); Write_Cmd(0x38); delay(5); Write_Cmd(0x38); delay(5); Write_Cmd(0x38); Write_Cmd(0x38); Write_Cmd(0x01); Write_Cmd(0x0c); Write_Cmd(0x06); //Write_Cmd(0x80+0x042);//写入显示缓冲区起始地址为1行2列}/**********************************************///从第一行开始显示字符串;(长度应不大于16)void note(char s[]){ uchar i=0; Write_Cmd(0x01);//清屏 while(s[i]!='\0') { Write_Data(s[i]); i++; }}。
9.跪求一篇关于应用电子的毕业论文
编码电子锁的设计与制作论文 随着社会物质财富的日益增长,安全防盗已成为社会问题。
而锁自古以来就是把守门户的铁将军,人们对它要求甚高,既要安全可靠地防盗,又要使用方便,这也是制锁者长期以来研制的主题。目前国内,大部分人使用的还是传统的机械锁。
然而,眼下假冒伪劣的机械锁泛滥成灾,互开率非常之高。所谓互开率,是各种锁具的一个技术质量标准,也就是1把钥匙能开几把锁的比率。
经国家工商局、国家内贸局、中国消协等部门对锁具市场的调查,发现个别产品的互开率居然超标26倍。弹子锁质量好坏主要取决于弹子数量的多少以及弹子的大小,而弹子的多少和大小受一定条件的限制。
此外,即使是一把质量过关的机械锁,通过急开锁,甚至可以在不损坏锁的前提下将锁打开,提供了发展的空间。电子锁是第三代计算机防盗报警器的核心组成部分,用于识别用户身份的合法性。
它有不少优点。例如保密性强,防盗性能好可以不需要钥匙,只要记住开锁的密码和方法,便可开锁,即方便又可避免因丢失钥匙带来的烦恼和损失。
如果密码泄露,主人可以比较方便地设置新的开锁密码,不会造成损失,此外,编码电子锁将电子门铃和防盗报警与电子锁合为一体,实现了一物多用。由于以上诸多优点,编码电子锁能够广泛地应用于超市、住家、办公单位等许多场所。
1 系统方案选择本次设计中分析了两种方案,一种是中规模集成电路控制的方案,另一种是单片机控制的方案。两中方案各有各的优缺点,通过以下两个方案的比较选择设计了其中一个方案。
1.1 中规模集成电路控制方案一:采用集成电路控制。编码电子锁电路分为编码电路、控制电路、复位电路、解码电路、防盗报警电路、门铃电路。
电子锁主要由输入元件、电路(包括电源)以及锁体三部分组成,后者包括电磁线圈、锁拴、弹簧和锁柜等。当电磁线圈中有一定的电流通过时,磁力吸动锁栓,锁便打开。
用发光二极管代表电磁线圈,当发光二极管为亮状态时,代表电子锁被打开。每来1个输入时钟,编码电路的相应状态就向前前进一步。
在这个操作过程中,如果按照规定的代码顺序按动编码按键,编码电路的输出就跟随这个代码的信息。正确输入编码按键的数字,控制电路通过整形供给编码电路时钟。
一直按规定的编码顺序操作完,则解码电路驱动开锁电路把锁打开。在操作过程中,如果没有按照规定代码顺序按下数字键或按动了其他键,控制电路将驱动防盗报警电路产生报警信号。
方案二:采用一种是用以at89s51为核心的单片机控制方案。利用单片机灵活的编程设计和丰富的io端口,及其控制的准确性,不但能实现基本的密码锁功能,还能添加调电存储、声光提示甚至添加遥控控制功能。
电子密码的硬件以单片机AT89C51 为核心。AT89C51 是一种带4k 字节闪烁可编程、可擦除只读,存储器FPEROM(Falsh Programmable and ErasableRead Only Memory)的低电压、高性能CMOS 8 位微处理器。
其外接12 个按钮组成的3*4 键盘,通过4511 和7406(或7407)等驱动电路与单片机相连,以实现密码等的显示功能;利用串行EαPROM 存储器AT93C46 实现密码有效的永久保存。电子密码锁由键盘输入的识别、4位LED的显示、密码的比较、修改、存储、AT93C46 的读取与写入、报警和开锁控制电平的输出。
根据框图,结合硬件结构,可以将键盘输入的识别用来作为系统的监控程序(主程序),用显示程序来延时,不断查询键盘。如果有键按下,就得到相应的键值。
结合当前系统所处的状态,调用不同的操作模块,实现相应的功能。而执行模块主要有数字输入模块、确定键模块、修改键模块及显示模块。
1.3 方案比较设计本课题时构思了两种方案:方案一是用锁存器74LS74、74LS00、74LS20和555基集成块构成的数字逻辑电路控制;方案二是用以AT89C51为核心的单片机控制。考虑到编码电子锁制作成本低,设计要求少,易实现控制要求,而单片机方案原理的复杂,调试较为繁琐,本人对数字电路基础较熟悉,有利于研究该课题。
所以采用了方案一。 因此对该课题的研究具有实际应用价值。
在指导老师、同学和实习单位同事的帮助下,我顺利地完成了毕业论文。使我从中掌握了查阅资料的方法和分析问题的能力。
毕业论文的顺利完成,离不开各位同学、同学和朋友的关心和帮助。在整个的毕业论文学写作中,各位老师、同学和朋友积极的帮助我和提供有利于论文写作及毕业设计的建议和意见,在他们的帮助下,论文得于不断的完善,最终帮助完成了整个毕业论文和设计。
感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我有了良好的专业课知识,这也是论文得以完成的基础。 你可以再加修改下 ,希望能帮你燃眉之急!!。
10.急求: 4*4键盘及8位数码管显示构成的电子密码锁论文
用4*4组成0-9数字键及确认键。
用8位数码管组成显示电路提示信息,当输入密码时,只显示“8.”,当密码位数输入完毕按下确认键时,对输入的密码与设定的密码进行比较,若密码正确,则门开,此处用led发光二极管亮一秒钟做为提示,同时发出“叮咚”声;若密码不正确,禁止按键输入3秒,同时发出“嘀、嘀”报警声;若在3秒之内仍有按键按下,则禁止按键输入3秒被重新禁止。2. 电路原理图图4.33.13. 系统板上硬件连线(1). 把“单片机系统”区域中的p0.0-p0.7用8芯排线连接到“动态数码显示”区域中的abcdefgh端子上。
(2). 把“单片机系统“区域中的p2.0-p2.7用8芯排线连接到“动态数码显示”区域中的s1s2s3s4s5s6s7s8端子上。(3). 把“单片机系统”区域中的p3.0-p3.7用8芯排线连接到“4*4行列式键盘”区域中的r1r2r3r4c1c2c3c4端子上。
(4). 把“单片机系统”区域中的p1.0用导线连接到“八路发光二极管模块”区域中的l2端子上。(5). 把“单片机系统”区域中的p1.7用导线连接到“音频放大模块”区域中的spk in端子上。
(6). 把“音频放大模块”区域中的spk out接到喇叭上。4. 程序设计内容(1). 4*4行列式键盘识别技术:有关这方面内容前面已经讨论过,这里不再重复。
(2). 8位数码显示,初始化时,显示“p ”,接着输入最大6位数的密码,当密码输入完后,按下确认键,进行密码比较,然后给出相应的信息。在输入密码过程中,显示器只显示“8.”。
当数字输入超过6个时,给出报警信息。在密码输入过程中,若输入错误,可以利用“del”键删除刚才输入的错误的数字。
(3). 4*4行列式键盘的按键功能分布图如图4.33.2所示:图4.33.25. c语言源程序#include unsigned char ps[]={1,2,3,4,5};unsigned char code dispbit[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x00,0x40,0x73,0xff};unsigned char dispbuf[8]={18,16,16,16,16,16,16,16};unsigned char dispcount;unsigned char flashcount;unsigned char temp;unsigned char key;unsigned char keycount;unsigned char pslen=5;unsigned char getps[6];bit keyoverflag;bit errorflag;bit rightflag;unsigned int second3;unsigned int aa,bb;unsigned int cc;bit okflag;bit alarmflag;bit hibitflag;unsigned char oka,okb;void main(void){unsigned char i,j;tmod=0x01;th0=(65536-500)/256;tl0=(65536-500)%256;tr0=1;et0=1;ea=1;while(1){p3=0xff;p3_4=0;temp=p3;temp=temp & 0x0f;if (temp!=0x0f){for(i=10;i>0;i--)for(j=248;j>0;j--);temp=p3;temp=temp & 0x0f;if (temp!=0x0f){temp=p3;temp=temp & 0x0f;switch(temp){case 0x0e:key=7;break;case 0x0d:key=8;break;case 0x0b:key=9;break;case 0x07:key=10;break;}temp=p3;p1_1=~p1_1;if((key>=0) && (key<10)){if(keycount<6){getps[keycount]=key;dispbuf[keycount+2]=19;}keycount++;if(keycount==6){keycount=6;}else if(keycount>6){keycount=6;keyoverflag=1;//key overflow}}else if(key==12)//delete key{if(keycount>0){keycount--;getps[keycount]=0;dispbuf[keycount+2]=16;}else{keyoverflag=1;}}else if(key==15)//enter key{if(keycount!=pslen){errorflag=1;rightflag=0;second3=0;}else{for(i=0;i
转载请注明出处众文网 » 电子密码锁的设计毕业论文模板