有关数据分析毕业论文(如何对一份数据进行分析论文知乎)
1.如何对一份数据进行分析 论文 知乎
汇调研(专业的第三方市场调研服务提供商)
先说说写一份好的数据分析报告的重要性,很简单,因为分析报告的输出是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。
一份好的分析报告,有以下一些要点:
首先,要有一个好的框架
跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;
第二,每个分析都有结论,而且结论一定要明确
如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;
第三,分析结论不要太多要精
如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;
第四,分析结论一定要基于紧密严禁的数据分析推导过程
不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;
第五,好的分析要有很强的可读性
这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;
第六,数据分析报告尽量图表化
这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;
第七,好的分析报告一定要有逻辑性
通常要遵照:1、发现问题–2、总结问题原因–3、解决问题,这样一个流程,逻辑性强的分析报告也
2.毕业论文数据分析怎么描述?
数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。
如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。
3.本科论文的数据分析怎么做?相关性分析,假设检验,回归分析需要那
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
4.求一篇关于数据分析的课程设计论文
希望能够帮到你:毕业设计不同于毕业论文,它的组成部分不只是一篇学术论文,我们拿“机械毕业设计”举例:随着科技发展的进步,各大高校对机械毕业设计的内容提出了一定的要求,2004年以前设计内容一般包括:毕业设计图纸+说明书(毕业论文),2005年以后国家教育部门提出新的要求,结合工厂需求加入了三维设计,模拟仿真,及程序分析研究。
其中包括:毕业设计图纸(三维“UG ,PRO/E,CAM,CAXA,SWOLIDWORD”+CAD二维工程图)+开题报告+任务书+实习报告+说明书正文。这足够的说明了做一份优质的毕业设计是要付出相当的努力!高等学校技术科学专业及其他需培养设计能力的专业或学科应届毕业生的总结性独立作业。
要求学生针对某一课题,综合运用本专业有关课程的理论和技术,作出解决实际问题的设计。毕业设计是高等学校教学过程的重要环节之一。
相当于一般高等学校的毕业论文。目的是总结检查学生在校期间的学习成果,是评定毕业成绩的重要依据;同时,通过毕业设计,也使学生对某一课题作专门深入系统的研究,巩固、扩大、加深已有知识,培养综合运用已有知识独立解决问题的能力。
毕业设计也是学生走上国家建设岗位前的一次重要的实习。一些国家根据学生的毕业设计,授予一定的学衔。
如建筑师、农艺师、摄影师等。中国把毕业设计和毕业考试结合起来,作为授予学士学位的依据。
目的要求目的毕业设计公开答辩会毕业设计公开答辩会(1)培养学生综合运用所学知识,结合实际独立完成课题的工作能力。(2)对学生的知识面,掌握知识的深度,运用理论结合实际去处理问题的能力,实验能力,外语水平,计算机运用水平,书面及口头表达能力进行考核。
要求(1)要求一定要有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并要求技术含量较高;(2)设计或论文应该在教学计划所规定的时限内完成;(3)书面材料:框架及字数应符合规定。基本步骤编辑确定课题选题是毕业设计的关健。
一个良好的课题,能强化理论知识及实践技能,使学生充分发挥其创造力,圆满地完成毕业设计。毕业设计的课题可从以下几个方面综合考虑:(1)有利于综合学生所学知识。
(2)能结合学科特点。(3)尽可能联系实际。
(4)有一定的应用价值。根据以上要求,可以考虑从下面一些角度挖掘课题:(1)学科教学的延伸。
例如:结合电气控制线路,要求学生设计机械动力头控制电路并安装调试。结合数字电路进行逻辑电路的设计与装接。
(2)多学科的综合。结合某专业学科确定一个综合课题,假如课题较大,可分解为几个子课题,交由不同的小组完成,最后再整合成一个完整的课题。
例如,机电专业可设计以下课题:大型城市的交通信号灯指示。这个课题就可分为以下两个子课题:PLC控制的信号灯显示、信号长短计时的时钟电路。
(3)结合生产实际。学校可以和一些单位联合,共同开发一批有实用价值、适合学生设计的课题,甚至可以以某些单位的某项生产任务作为设计课题。
学校应注重课题资料的积累,尽量选取最适合教学内容又贴近生产实际的课题,完成资料库的建设,为今后课题的不断完善创造良好的基础。项目分析毕业设计需对一个即将进行开发的项目的一部份进行系统分析(需求分析,平台选型,分块,设计部分模块的细化)。
这类论文的重点是收集整理应用项目的背景分析,需求分析,平台选型,总体设计(分块),设计部分模块的细化,使用的开发工具的内容。论文结构一般安排如下: 1)引言(重点描述应用项目背景,项目开发特色,工作难度等) ;2)项目分析设计(重点描述项目的整体框架,功能说明,开发工具简介等);3)项目实现(重点描述数据库设计结果,代码开发原理和过程,实现中遇到和解决的主要问题,项目今后的维护和改进等,此部分可安排两到三节);4)结束语。
指导设计指导教师布置给学生任务后,要指导学生分析课题,确定设计思路,充分利用技术资料,注重设计方法和合理使用工具书。学生设计时应注重理论与实际的差距,充分考虑设计的可行性。
指导教师要注重学生完成任务的质量和速度,及时指出其存在的不足,启发其独立思考。在设计过程中,应指导学生养成良好的安全意识和严谨的工作作风。
设计完成后应撰写毕业设计论文,对自己的设计过程作全面的总结。组织答辨答辨是检查学生毕业设计质量的一场“口试”。
通过这一形式,有助于学生进一步总结设计过程,检验毕业设计论文及图纸毕业设计论文及图纸其应变能力及自信心,为真正走上社会打下坚实的基础。答辩主要考查学生的一些专业基础知识和基本理论。
答辩的过程实际上也是帮助学生总结的过程。教师要积极引导学生总结在设计过程中积累起来的经验,分析设计效果,找出不足以及改进方法,帮助学生把实践转化成自己的知识和技能。
通过答辩,也有助于学生提高应变能力及自信心,为真正走上社会打下坚实的基础。评定成绩评定成绩的根据主要有两个方面:一是毕业设计的质量;二是答辩的表现,而答辩的表现不低于毕业设计的质量。
优秀:按期圆满完成任务。
5.用excel怎么进行论文数据分析
1:excel虽然内置有数据分析模块,但是毕竟不是专业的数据统计分析软件,功能上受限很多。
2:当然我们平时的大部分数据分析工作,无论是课程、毕业论文需要的,大家可能更习惯于使用专业的Eviews、SPSS、Stata、Minitab,甚至计量和统计科班的大神们都在用SAS、MATLAB或者R语言、Python语言。
3:今天给大家推荐的两款excel数据分析插件内存小,内置于excel工具栏随点随用,仅仅包含常用功能,界面简洁。
4:第一款6SQ统计是国内一家叫做六西格玛网的公司开发的,主要用于品质管理,不过常用的统计功能和数据分析模块都具备。一共有两个版本:开发版(收费)和个人版(免费),经过试用,两个版本功能差别不大。
6.急求有关数据挖掘方面的毕业论文题目
寿险行业数据挖掘应用分析 寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。
如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。
寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。 数据挖掘 数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。
其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。 目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。
CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。
CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。 商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。
建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。
在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。 行业数据挖掘 经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。
同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。 根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。
这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。 针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。
从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。
同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。 挖掘系统架构 挖掘系统包括规则生成子系统和应用评估子系统两个部分。
规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。
发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。 应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。
通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。
规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。
目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。 实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
关于数据分析算法的毕业论文(请问谁有关于统计的论文,具体要求是使用多元统计分析方法分析数)
1.请问谁有关于统计的论文,具体要求是使用多元统计分析方法分析数
1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。
它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。
因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。
其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里, (1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。
A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。
2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。
e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。
因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。
为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。
它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。
将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。
gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。
3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。
旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。
进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。
常用的斜交旋转方法有Promax法等。 4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。
例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。
设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。
但因子得分函数中方程的个数m小于。
2.急求有关数据挖掘方面的毕业论文题目
寿险行业数据挖掘应用分析
寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。
数据挖掘
数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。
目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。
商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。
行业数据挖掘
经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。
根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。
针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。
挖掘系统架构
挖掘系统包括规则生成子系统和应用评估子系统两个部分。
规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。
应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。
目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。
实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
3.毕业论文数据分析怎么描述
数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。
如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。
4.我是本科毕业论文是关于调查分析的,里面的数据,分析我都是自己
数据最好不要自己编。调查分析类的软件(如果你是学营销或管理学的)可以用SPSS。一般人编的数据数据分析结果都能看出端倪来的,老师都不是傻子,到时候一旦被看出来你就会很难过了。
一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
还是哪句话,一般不是长期做学术或很有经验的人,编的数据结果都很明显的能看出端倪的。建议不要数据造假,学术上是最鄙视也不能接受的。这是比你论文框架错了还要严重的错误。
5.毕业设计题目是(选用决策树算法的数据挖掘实例分析与设计)
应用遗传算法和决策树算法在数据挖掘中的比较 贾修一 MG0533024 (南京大学 计算机科学与技术系, 江苏省南京市 210093) A Comparision between the Genetic Algorithms and Decision Tree For Data Mining Abstract: This chapter introduces the application with the genetic algorithms and ID3 for the data mining, choose the better algorithm to classifier the given data sets through.the comparision between the two algorithms. And analyzing the results of the experiment as well as reasons. Key words: genetic algrithms; data ming; decision Tree 摘 要: 对训练数据分别采用遗传算法和决策树算法进行数据挖掘,通过比较两者实验得出的结果,来选择更适合本数据集的算法进行分类,并分析实验结果及原因. 关键词: 遗传算法;数据挖掘;决策树算法 1. 数据的描述 数据属性有139351维,每个属性的取值为0或1,分类标识只有两类:A和I.数据的维数太高,在数据预处理阶段最好做属性的约简,进行降维的处理. (1)数据维数太高,易造成一定的维数灾难,使得分类挖掘时间过长. (2)数据庞大,肯定有些噪音数据. 2.算法的设计 为了提高最后分类的精确度,特设计了两种方法进行比较,从中选出一种精确度高的方法.第一种是根据数据的特点,每个属性只取值0和1,所以进行属性约简的时候采用遗传算法.遗传算法的优点是可以对大规模的数据进行一定的属性约简. 2.1 遗传算法描述: (1) 遗传算法的步骤是编码,选择,交叉,变异.通过模仿自然界中的遗传进化原理,来对数据进行处理.而遗传算法的好坏取决于适应度函数的选择,进化的次数,和交叉变异的合理性和概率性等,所以要想设计一个合适的遗传算法必须经过大量的实验. (2) 就训练数据而言,对每一维属性的取值,在类标识一定的条件下,取1和取0的概率之间有个绝对值差α1,α2,该差越大,说明该属性的重要程度越高.同时还要考虑对同一维属性,不论最终类标识是什么,取值都相同的话,则该属性可以被认为是无效的属性,对最后的分类没有影响,所以适应度函数取对每一维属性的α1,α2的熵,熵越大,则属性的重要程度就越低. (3) 编码阶段,就把每一位属性做为一个长度为139351的染色体的一个基因,1表示选择该属性,0表示不选择该属性.随机初始化8个种群,按照适应度函数的定义,从中选取4个适应度函数最小的染色体做为父代. (4) 将选出的父代进行交叉操作,因为是降维操作,所以交叉就是取两个染色体之间隔位进行AND(与)操作,变异就是按照一定的概率,在139351维上随机的100位进行非操作,即:0变为1,1变为0.依次又产生4个后代,结合原来的4个父代组成新的8个初始种群.进化50次. 然后利用贝叶斯方法进行分类.得到的是一个弱的学习器h,然后利用AdaBoost方法进行强化学习分类器. 2.2 AdaBoost算法描述: (1) 给定训练集(x1,y1),(x2,y2),…,(xm,ym)m个. (2) yi∈{-1,+1},实例xi∈X的正确标识. (3) for t=1,…,T 2 { 构造{1,…,m}上的分布Dt,找出弱分类器 ht:X->{-1,+1}, 同时在Dt产生很小的错误εt: εt=PrDt[ht(xi)≠yi] } (4)构造 Dt,D1(i)=1/m Dt+1(i)= Dt/Zt*exp(-αt*yi*ht(xi))//(注:yi和ht(xi)只能取值于{-1,+1}) 其中Zt是归一化因子(使Dt+1为分布) αt=1/2*㏑((1-εt)/ εt)>0 (5)输出最终分类器:Hfinal(x)=sign(∑αt*ht(x)). 第二种方法就是直接使用决策树方法(ID3算法)进行分类.求出每一维属性的的信息增益,建立一棵决策树,利用决策树来进行分类. 2.3 决策树算法(ID3) (1)创建节点N; (2)if samples都在同一个类C then { 返回N作为叶结点,以类C标识; } (3)if attribut_list为空 then { 返回N作为叶结点,标记为samples中最普通的类; } (4) 选择attribute_list中具有最高信息增益的属性test_attribute;标记节点N为test_attribute; (5) for each test_attribute中的已知值a 由节点N长出一个条件为test_attribute=a的分枝; (6) 设s是samples中test_attribute=a的样本的集合; (7) if s为空 then 加上一个树叶,标记weisamples中最普通的类; else 加上一个由ID3(s,attribute_list-test_attribute)返回的节点; 3. 实验分析 就第一种方法:通过实验,在进化次数上选取50次,使得维数约简到1500维左右时得到的分类效果最好,但由于种群是随机产生的,所以在未进行boosting强化时正确率在60~85%之间,不是很稳定,但是符合弱分类器的要求,即只要正确率超过50%就行,在进行boosting后,正确率能超过80%,但可能是数据进行约简的不好或进行迭代的次数选取不太合适,正确率却没有ID3的高.就本数据集而言,由于最终标识只有2个,所以比较适合使用遗传算法和Adaboost进行训练.正确率不高主要问题应该在: (1)遗传算法的适应度函数没有选好,不同的编码方式对应不同的适应度函数取法,就本例而言,二进制编码方式应该是可以的,就是在对适应度函数取的时候没有一个合适的数据表示,只好利用了熵的概念,但在实际意义上感觉效果并不是很好.属性约简后正确率不高,这应该是最主要的原因. (2)交叉变异的方式或许有问题,但是不是主要问题,只要适应度函数选好,也就是选择操作正确。
6.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
数据分析的毕业论文主要内容(毕业论文主要内容概述包括哪些内容)
1.毕业论文主要内容概述 包括哪些内容
首先,我要说明这里的指导并非 常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。
迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。
很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。
因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。
其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。
通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。
第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。
当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。
这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。
分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。
比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。
因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后 就是数据的录入。
记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。
因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。
因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。
最后。分析完成后,开始整篇论文的写作。
PS:还要强调一点,现在的高校导师都存在一些问题,因为我接触了那么多学生,他们的认为观点就。
2.毕业论文数据分析怎么描述
数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。
如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。
3.毕业论文主要内容概述 包括哪些内容
每年毕业季时,各高校的毕业生都需要完成毕业论文的写作后才能顺利毕业.毕业论文是每一个毕业生都避免不了需要完成的,这是高校考察学生综合分析能力的一个过程,同时也是培养学生解决实际问题能力的一个重要教学环节,学校也会根据毕业论文查重的结果来作为一个考核标准,从而去判断其是否能够授予学位证书.下面学术堂就为大家介绍毕业论文主要写什么? 1、论文标题 论文的标题是我们在刚开始写作毕业论文时,就首先要先明确的.论文标题的选择要适度,范围不能过大或是过小,如果选择的范围过大,那么在后期写作的时候就会导致论文的内容比较分散,造成主题不明的情况.可范围如果过小的话,那么则又会导致写到一半发现无内容可写,这样论文的总字数就可能会达不到要求.标题是居于我们论文当中第一行的居中位置,且字体通常要比正文内容的字体稍大一些. 2、论文的中英摘要 通常我们在写论文摘要的时候,一般都是中文摘要在前英文摘要在后.摘要内容需要我们将论文的研究目的、方法、结果和结论等,通过围绕主题简洁进行展开,主要是需要将重点部分介绍清楚,通常一万字的论文当中中文摘要有200-300的字数就行,英文摘要不超过250个实词. 3、关键词 关键词也可以叫做论文的主题词,是我们从论文当中选出来为论文的搜索提供方便,通常选择3-8个词用比较显著的字体另起一行,排在摘要的左下方位置. 4、正文内容 论文的正文部分是我们论文当中最重要而且是最精彩的部分,也是我们整篇论文当中是最核心的部分.通常正文内容应包括有开头、本论以及结论三个主要部分,是论文的实质内容体现. 5、参考文献 参考文献的引用对于我们这些刚接触到学术论文写作的学生来说,是必不可少的一个部分.我们在搜集参考文献的过程中也能提高我们的见识增广我们的视野。
4.统计学的论文资料
从统计学的发展趋势谈统计教育的改革 摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。
本文从统计学的发展趋势谈了统计教育急需改革的几个方面。关键词: 统计学; 发展趋势; 统计教育改革 随着国家创新体系的建立,统计创新工程已经提上议事日程,统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新。
创新的基础在于教育,没有统计教育的创新,就谈不上统计实践的创新。准确把握统计学的发展方向与发展形势,培养适应新世纪社会经济发展需要的人才,是统计教育工作者必须面对的问题,本文从统计学的基本发展趋势谈一谈统计教育急需改革的几个方面。
一、统计学的基本发展趋势 纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。
(一)统计学与实质性学科结合的趋势 统计学是一门通用方法论的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。
否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。
并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于政府统计调查资料的搜集。
历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。
他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。
这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。
实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。
这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。
统计的工具属性才能够得以充分体现。(二)统计学与计算机科学结合的趋势 纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。
上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年代发展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。
而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。
目前企业经营管理中建立的决策支持系统(DSS)更加离不开统计模型。最近国外兴起的数据挖掘(Datamining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。
随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(DMKD)技术应运而生,并显示出强大的生命力。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。
在这种需求牵引下,汇聚了不同领。
5.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
6.毕业论文的内容要求
一、论文的结构与要求 毕业设计(论文)包括以下内容(按顺序):本科论文包括封面、目录、标题、内容摘要、关键词、正文、注释、参考文献等部分。
如果需要,可以在正文前加“引言”,在参考文献后加“后记”。论文一律要求打印,不得手写。
1.目录 目录应独立成页,包括论文中全部章、节和主要级次(文经类)的标题和所在页码。2.论文标题 论文标题应当简短、明确,有概括性。
论文标题应能体现论文的核心内容、专业特点和学科范畴。论文标题不得超过25个汉字,不得设置副标题,不得使用标点符号,可以分二行书写。
论文标题用词必须规范,不得使用缩略语或外文缩写词(通用缩写除外)。3.内容摘要 内容摘要应扼要叙述论文的主要内容、特点,文字精练,是一篇具有独立性和完整性的短文,包括主要成果和结论性意见。
摘要中不应使用公式、图表,不标注引用文献编号,并应避免将摘要撰写成目录式的内容介绍。内容摘要一般为200个汉字左右。
4.关键词 关键词是供检索用的主题词条,应采用能够覆盖论文主要内容的通用专业术语(参照相应的专业术语标准),一般列举3——5个,按照词条的外延层次从大到小排列,并应出现在内容摘要中。5.正文 正文一般包括绪论(引论)、本论和结论等部分。
正文字数本科一般不少于5000字,专科一般不少于3000字,正文必须从页首开始。*绪论(引论)一般做为专业技术类论文的第一章,应综述前人在本领域的工作成果,说明毕业设计选题的目的、背景和意义,国内外文献资料情况以及所要研究的主要内容。
文经类论文的绪论即全文的开始部分,不编写章节号。一般包括对写作目的、意义的说明,对所研究问题的认识并提出问题。
*本论是全文的核心部分,应结构合理,层次清晰,重点突出,文字通顺简练。*结论是对主要成果的归纳,要突出创新点,以简练的文字对所做的主要工作进行评价。
结论一般不超过500个汉字。 正文一级及以下子标题格式如下:理工类各专业:第一章;1.1;一、;1.;(1);①; 文经类:一、;(一);1.;(1);①。
6.注释 注释是对所创造的名词术语的解释或对引文出处的说明。注释采用脚注形式,用带圈数字表示序号,如注①、注②等,数量不少于8个。
7.参考文献 参考文献是论文的不可缺少的组成部分,是作者在写作过程中使用过的文章、著作名录。参考文献应以近期发表或出版的与本专业密切相关的学术著作和学术期刊文献为主,数量一般不少于6篇。
产品说明、技术标准、未公开出版或发表的研究论文等不列为参考文献,有确需说明的可以在后记中予以说明。二、打印装订要求 论文必须使用标准a4打印纸打印,一律左侧装订,并至少印制3份。
页面上、下边距各2.5厘米,左右边距各2.2厘(论文所附的较大的图纸、数据表格及计算机程序段清单等除外),并按论文装订顺序要求如下:1.封面 封面包括《广西广播电视大学关于毕业设计(论文)评审表》(封面、附录5)、《学生毕业设计(论文)评审表》(封2)、《广西广播电视大学关于毕业设计(论文)答辩申报表》(封2、附录5)。2.目录 目录列至论文正文的三级及以上标题所在页码,内容打印要求与正文相同。
目录页不设页码。3.内容摘要 摘要标题按照正文一级子标题要求处理,摘要内容按照正文要求处理。
内容摘要不设页码。4.关键词 索引关键词与内容摘要同处一页,位于内容摘要之后,另起一行并以“[关键词]”开头(小四黑体),后跟3~5个关键词(小四宋体),词间空1字,其他要求同正文。
5.正文 正文必须从正面开始,并设置为第1页。页码在页末居中打印,其他要求同正文(如正文第5页格式为“5”)。
论文标题为标准三号黑体字,居中,单倍行间距; 论文一级子标题为标准四号黑体字,左起空两个字打印,单倍行间距; 正文一律使用标准小四号宋体字,段落开头空两个字,行间距为固定值20磅; 正文中的公式原则上居中。如公式前有文字(如:“解”、“假定”等),文字应与正文左侧对齐,公式仍居中,公式末尾不加标点。
公式序号按章编排,如第二章的第三个公式序号为“(2—3)”,附录2中的第三个公式序号为“(②—3)”等; 正文中的插图应与文字紧密配合,文图相符,内容正确,绘制规范。插图按章编号并置于插图的正下方,插图不命名,如第二章的第三个插图序号为“图2—3”,插图序号使用标准五号宋体字; 正文中的插表不加左右边线。
插表按章编号并置于插表的左上方,插表不命名,如第二章的第三个插表序号为“表2—3”,插表序号使用标准五号宋体字。6、参考文献 按照gb7714—87《文后参考文献著录规则》规定的格式打印,内容打印要求与论文正文相同。
参考文献从页首开始,格式如下:(1)著作图书文献 序号 作者.书名.出版者.出版年份及版次(第一版省略)(2)译著图书文献 序号 作者.书名.出版者.出版年份及版次(第一版省略)(3)学术刊物文献 序号 作者.文章名.学术刊物名.年,卷(期):引用部分起止页码(4)学术会议文献 序号 作者.文章名.编者名.会议名称,会议地址,年份.出版地,出版者,出版年:引用部分起止页码(5)学位论文类参考文献 序号 作者.学。
7.毕业设计(论文)任务的内容和要求(包括原始数据、技术要求、工作
毕业论文(设计)任务书填写要求 主要环节的基本要求:统一填写以下内容中外文献查阅要求:首先,要尽量查阅原始文献,尽量避免文献 征引的错误或不妥;其次,尽量要引用主流文献,如与该课题相关的 核心期刊、经典著作、研究报告、重要观点和论述等;再次,如有可 能争取查阅相关外文文献,做到广泛查阅文献;最后,在查阅文献时 要对文献进行分类, 记录文献信息和藏地点, 对于特别重要的文献, 要做好读书笔记,摘录其中重要观点和论述,为“文献综述”的撰写 打下良好的基础。 外文翻译要求:翻译外文文献应主要选自学术期刊、学术会议的 文章,有关著作及其他资料,应与毕业论文主体相关,并作为外文参 考文献, 列入毕业论文的参考文献, 并在中文译文每篇首页用 “脚注” 注明原文作者及出处;中文译文应附外文原文;“英文摘要”要尽量 做到“信、达、雅”,要避免用电脑“硬译”。
方面把你论文的开题报告的背景及主要内容整合一下,一方面这样列:1、能够比较全面的阐述有关网络隐私权的相关基础问题。 2、能够比较深入的探讨网络隐私权保护合理的解决途径。 3、最好能够结合案例来说明问题。 4、能够通过分析,得出自己的独到见解。 5、能够对相关数据进行整理来阐述问题。
我能跟你说的就这些,我也不清楚你的是什么专业的,
至于包括原始数据、技术要求、工作要求等,这些的话就得根据你的题目和你们学校的要求去写了。
8.求一篇关于数据分析的课程设计论文
希望能够帮到你:毕业设计不同于毕业论文,它的组成部分不只是一篇学术论文,我们拿“机械毕业设计”举例:随着科技发展的进步,各大高校对机械毕业设计的内容提出了一定的要求,2004年以前设计内容一般包括:毕业设计图纸+说明书(毕业论文),2005年以后国家教育部门提出新的要求,结合工厂需求加入了三维设计,模拟仿真,及程序分析研究。
其中包括:毕业设计图纸(三维“UG ,PRO/E,CAM,CAXA,SWOLIDWORD”+CAD二维工程图)+开题报告+任务书+实习报告+说明书正文。这足够的说明了做一份优质的毕业设计是要付出相当的努力!高等学校技术科学专业及其他需培养设计能力的专业或学科应届毕业生的总结性独立作业。
要求学生针对某一课题,综合运用本专业有关课程的理论和技术,作出解决实际问题的设计。毕业设计是高等学校教学过程的重要环节之一。
相当于一般高等学校的毕业论文。目的是总结检查学生在校期间的学习成果,是评定毕业成绩的重要依据;同时,通过毕业设计,也使学生对某一课题作专门深入系统的研究,巩固、扩大、加深已有知识,培养综合运用已有知识独立解决问题的能力。
毕业设计也是学生走上国家建设岗位前的一次重要的实习。一些国家根据学生的毕业设计,授予一定的学衔。
如建筑师、农艺师、摄影师等。中国把毕业设计和毕业考试结合起来,作为授予学士学位的依据。
目的要求目的毕业设计公开答辩会毕业设计公开答辩会(1)培养学生综合运用所学知识,结合实际独立完成课题的工作能力。(2)对学生的知识面,掌握知识的深度,运用理论结合实际去处理问题的能力,实验能力,外语水平,计算机运用水平,书面及口头表达能力进行考核。
要求(1)要求一定要有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并要求技术含量较高;(2)设计或论文应该在教学计划所规定的时限内完成;(3)书面材料:框架及字数应符合规定。基本步骤编辑确定课题选题是毕业设计的关健。
一个良好的课题,能强化理论知识及实践技能,使学生充分发挥其创造力,圆满地完成毕业设计。毕业设计的课题可从以下几个方面综合考虑:(1)有利于综合学生所学知识。
(2)能结合学科特点。(3)尽可能联系实际。
(4)有一定的应用价值。根据以上要求,可以考虑从下面一些角度挖掘课题:(1)学科教学的延伸。
例如:结合电气控制线路,要求学生设计机械动力头控制电路并安装调试。结合数字电路进行逻辑电路的设计与装接。
(2)多学科的综合。结合某专业学科确定一个综合课题,假如课题较大,可分解为几个子课题,交由不同的小组完成,最后再整合成一个完整的课题。
例如,机电专业可设计以下课题:大型城市的交通信号灯指示。这个课题就可分为以下两个子课题:PLC控制的信号灯显示、信号长短计时的时钟电路。
(3)结合生产实际。学校可以和一些单位联合,共同开发一批有实用价值、适合学生设计的课题,甚至可以以某些单位的某项生产任务作为设计课题。
学校应注重课题资料的积累,尽量选取最适合教学内容又贴近生产实际的课题,完成资料库的建设,为今后课题的不断完善创造良好的基础。项目分析毕业设计需对一个即将进行开发的项目的一部份进行系统分析(需求分析,平台选型,分块,设计部分模块的细化)。
这类论文的重点是收集整理应用项目的背景分析,需求分析,平台选型,总体设计(分块),设计部分模块的细化,使用的开发工具的内容。论文结构一般安排如下: 1)引言(重点描述应用项目背景,项目开发特色,工作难度等) ;2)项目分析设计(重点描述项目的整体框架,功能说明,开发工具简介等);3)项目实现(重点描述数据库设计结果,代码开发原理和过程,实现中遇到和解决的主要问题,项目今后的维护和改进等,此部分可安排两到三节);4)结束语。
指导设计指导教师布置给学生任务后,要指导学生分析课题,确定设计思路,充分利用技术资料,注重设计方法和合理使用工具书。学生设计时应注重理论与实际的差距,充分考虑设计的可行性。
指导教师要注重学生完成任务的质量和速度,及时指出其存在的不足,启发其独立思考。在设计过程中,应指导学生养成良好的安全意识和严谨的工作作风。
设计完成后应撰写毕业设计论文,对自己的设计过程作全面的总结。组织答辨答辨是检查学生毕业设计质量的一场“口试”。
通过这一形式,有助于学生进一步总结设计过程,检验毕业设计论文及图纸毕业设计论文及图纸其应变能力及自信心,为真正走上社会打下坚实的基础。答辩主要考查学生的一些专业基础知识和基本理论。
答辩的过程实际上也是帮助学生总结的过程。教师要积极引导学生总结在设计过程中积累起来的经验,分析设计效果,找出不足以及改进方法,帮助学生把实践转化成自己的知识和技能。
通过答辩,也有助于学生提高应变能力及自信心,为真正走上社会打下坚实的基础。评定成绩评定成绩的根据主要有两个方面:一是毕业设计的质量;二是答辩的表现,而答辩的表现不低于毕业设计的质量。
优秀:按期圆满完成任务。
转载请注明出处众文网 » 数据分析的毕业论文题目